
Top Level Cyber Threat Clusters
White Paper Version 1.7 ​

August 2025, Bernhard Kreinz

Bridging the Gap: A Unified Approach to identify and categorize Threats in Cyber Risk
Management. A Pragmatic Solution for Targeted Cyber Threat Identification and Cyber

Risk Management connecting the Operational Level with the Strategic Level.

Executive Summary

The cybersecurity landscape is fragmented. Organizations struggle with inconsistent

terminology and siloed approaches to threat identification and risk management, hindering

effective defense strategies. Current frameworks often conflate vulnerabilities, attack

techniques, and outcomes, leading to confusion and gaps in threat modeling. This white

paper introduces the Top Level Cyber Threat Clusters (TLCTC) framework, a novel

solution designed to bridge this critical gap and unify strategic planning with operational

security. Unlike existing approaches, the TLCTC framework provides a universal,

consistent taxonomy of ten distinct threat clusters, each rooted in a fundamental

underlying vulnerability rather than observed events or attacker behaviors. This clear,

cause-oriented categorization facilitates targeted threat identification, precise mapping of

threats to controls, and seamless integration with existing frameworks like NIST CSF,

MITRE ATT&CK & CWE, and STIX.

The TLCTC framework employs a unique two-tiered approach, distinguishing between

strategic management and operational security. At the strategic level, it empowers

leadership to define risk appetite, allocate resources effectively, and communicate cyber risk

clearly. Operationally, it enables security teams to implement targeted threat intelligence,

enhance incident response, and streamline security operations. This unified approach

ensures consistent cybersecurity strategy understanding and execution across all levels of the

organization.

This white paper details the derivation of the ten threat clusters through a logical thought

experiment, provides clear definitions and real-world examples, and outlines methods for

integrating the framework into existing security practices, including secure coding

guidelines and the software development lifecycle. Furthermore, it introduces the concept

of Cyber Threat Radars, a visualization tool based on the TLCTC framework, for

improved threat analysis, communication, and collaboration across organizations and

2

national borders. By adopting the TLCTC framework, organizations can transition from

reactive, fragmented cybersecurity practices to a proactive, unified approach, strengthening

their overall security posture and enabling more informed decision-making in the face of

evolving cyber threats, leading to more resilient and adaptable cybersecurity postures. I

encourage the cybersecurity community to engage with this framework, validate its

applicability, and provide feedback to further refine and enhance its effectiveness.

3

Table of Contents

Executive Summary...2
Table of Contents..4
Introduction..6
Objectives...8
Assumptions - Axioms..10
The Thought Experiment.. 12
Definitions...14
Bridging Strategy and Operations: A Comprehensive TwoTiered Approach......... 28
The Anatomy of Risk... 30
Data Risk Event Types..38
Sequences in Cyber Threat Clusters..43
Concept Applicability.. 45
Standardizing Strategic Cybersecurity... 54
IT Systems, Assets, and the TLCTC Framework... 67
A. Leveraging NIST CSF functions...72
B. SSDLC Integration...76
C. Secure Coding Practices.. 82
D. Threat Intelligence - Real World Examples... 96
E. Threat Intelligence - Analysis of MITRE & STIX.. 105
F. Introducing Cyber Threat Radars...114
G. Critical Analysis of Existing Frameworks... 120
H1. Oversimplification? A Philosophical View.. 131
H2. Oversimplification? An operational View... 134
I. Example Control Matrix with KRI, KCI and KPI...140
K. Physical Layer Analysis in the TLCTC Framework..145
L. Integrating Programmable Logic Controller (PLC) Architectures within the
TLCTC Framework..147
M. Enhancing CVE Details with TLCTC.. 151
N. CVE Analysis Example.. 155
O. Integrating FAIR with the TLCTC Framework...158
P. TLCTC Practical Application Guidelines.. 160
Q. Integrating NIST NICE Tasks with the TLCTC Framework........................... 164

4

X. Change Log.. 173
Z: References...176

5

Introduction

Demystifying the Cyber Threat Landscape: A Pragmatic Approach to Threat

Identification and Risk Management

Cybersecurity professionals face a critical challenge in effectively identifying and

categorizing threats due to the inconsistent and often ambiguous guidance provided by

leading standards and frameworks (NIST CSF, ISO 27000, CIS, ENISA, BSI, MITRE,

others and all CERT reports I have analyzed). The lack of clear distinctions between

threats, threat actors (or their motivation), vulnerabilities, control failures, IT system types,

and risk events has led to a semantic blur that hinders the development of effective risk

management strategies.

Driven by the need for a more coherent and actionable approach, I embarked on a thought

experiment to distill the essence of what constitutes a 'threat' in the cybersecurity domain.

The objective was to create a refined conceptual framework that clearly segregates threats

from commonly confused elements, providing a universal approach to cybersecurity that

can be applied across diverse IT systems and contexts.

The resulting framework, the "Top Level Cyber Threat Clusters (TLCTC)" provides a

pragmatic and structured solution for targeted threat identification. It seamlessly integrates

enterprise risk management (ERM) with security operations center (SOC) and threat

intelligence processes. By defining distinct, non-overlapping categories, this framework

eliminates ambiguity and ensures precise mapping of threats to controls. These clusters are

universally applicable both horizontally across various domains (e.g., enterprise IT, cloud

environments, IoT) and vertically through the IT stack (e.g., application layer, operating

system, hardware). This approach bridges the gap between strategic risk management and

operational security, empowering organizations to develop targeted threat intelligence,

6

implement effective risk mitigation strategies, and address the complexity of the cyber threat

landscape with clarity and confidence.

It is crucial to understand that cyber risks are a subset of the broader category of operational

risks (OpRisk). While cyber risk management focuses primarily on threats from

unauthorized or unknown entities, a comprehensive risk management strategy must

consider the full spectrum of operational risks. This includes traditional IT risks (with

threats such as e.g. ”software failure”, "error in use" and "abuse of rights"), compliance risks,

and third-party risks (including their associated cyber risks). Organizations should integrate

cyber risk management within a holistic OpRisk framework to gain a consolidated view of

their risk landscape. This approach allows for better resource allocation, more effective risk

mitigation strategies, and a clearer understanding of how cyber risks interact with other

operational risks. It's important to note that while actions of authorized actors (such as

employees or customers) should be managed under separate risk categories, any attempts by

these individuals to breach that boundary would fall within the scope of cyber risks. This

nuanced approach ensures that all potential cyber threats are addressed, regardless of their

origin, while maintaining the broader context of operational risk management.

7

Objectives

The 10 Top Level Cyber Threat Clusters framework serves as a Rosetta Stone in the
fragmented cybersecurity landscape, providing a universal translation layer between
strategic risk management and operational security through three core stakeholder
objectives:

The framework consists of three primary layers:

8

For Strategic Leadership & Risk Management:

●​ Establish a universal standard for cyber threat identification and risk management

●​ Enable direct mapping of threats to enterprise risk management processes

●​ Support quantifiable risk assessment through standardized threat categorization

For Security Operations & Technical Teams:

●​ Provide a systematic foundation for threat hunting and incident response

●​ Enable precise attack path mapping and root cause analysis

●​ Create a common taxonomy for threat intelligence sharing and incident
classification

For Global Cybersecurity Community:

●​ Establish a common language for cross-border threat communication

●​ Enable standardized threat intelligence sharing between sectors

●​ Support coordinated incident response across organizations

This streamlined framework bridges the gap between strategic cyber risk management and

operational security practices, uniting the fragmented landscape of cybersecurity

approaches under a common understanding supported by major organizations and

frameworks like NIST CSF, CVE, MITRE and ETSI and STIX.

9

Assumptions - Axioms

Why Start With Assumptions and Axioms?

Before diving into the cyber threat clusters, we must establish our foundational principles.

In any logical framework, axioms serve as basic truths that we accept without proof, while

assumptions define the scope and context of our thinking. Like mathematical proofs that

build upon basic axioms, our cyber threat framework requires clear starting points to

ensure consistent and logical development.

Agreement Required

The following assumptions and axioms form the essential foundation of the 10 Top Level
Cyber Threat Clusters concept. You must agree with these basic principles to validate and
effectively use this framework. If any of these foundational elements don't align with your
understanding, the subsequent threat categorization may not serve its intended purpose.

Key Axioms and Assumptions

I.​ Threats and Vulnerabilities of assets (software, hardware, human) have a unique
relationship, i.e., for every generic vulnerability (root weakness), there is ONE threat
cluster.

II.​ Each distinct attack vector is defined by the generic vulnerability it initially targets.

III.​ Threats are on the cause side from a Bow-Tie perspective. That means we do not
mix threats with events like data breach (Loss of Confidentiality) or Loss of
Availability (eg DDOS) or Loss of Integrity.

IV.​ The failure of controls is a Control-Risk (deviation from the Control Objective /
lack of effectiveness) and should not be confused with the actual Risk
(Threat->Incident/Event->Consequences). Therefore, it is not a structuring
element.

V.​ We separate threats from threat actors because threats can be applied by different
actors. On the strategic level, this is sufficient. From a Cyber Defense perspective, it
makes sense to further differentiate and "track" these APTs and others.

10

VI.​ We stick to the IT assets of the generic software and hardware and do not
differentiate by IT system types. Even SCADA systems have software and hardware.
Medical devices likewise and network components like switches, routers, and
firewalls too - IoT also. Generic refers to the fundamental components and
architecture common to all IT systems, regardless of their specific domain or
purpose.

VII.​ Every networked software system, regardless of its complexity or scale, is
fundamentally based on the principle of client-server (or caller-called function)
interaction. This occurs at various levels, from basic network communication (e.g.,
IP, DHCP) to complex application architectures, with the ten cyber threat clusters
addressing the vulnerabilities inherent in these interactions.

VIII.​ The identified Top-Level Threats can/must also be seen as sequence components in
the attack scenario of the cyber actor (attack vector, attack path (inclusive lateral
movement)). The sequence in which the attacker uses these components varies from
perpetrator to perpetrator and their "script."

IX.​ Top-Level Threat Clusters have Sub-Threats - It is the separation "Strategic Level"
and "Operational Level."

X.​ Credentials as System Control Elements: Credentials, tokens, keys and any
access-enabling identity representations must not be treated as mere data. They are
part of the software-driven access logic. Hence, their compromise constitutes a
system compromise, not merely a data risk.

Without these clear starting points, we risk mixing threats with vulnerabilities, confusing
causes with effects, and creating overlapping or inconsistent categories that don't serve
practical security needs.

Compliance note on credentials: Operationally, credentials and identity artifacts are elements of access control
and therefore drive #4 Identity Theft when used. Regulatory frameworks may additionally treat certain
credentials as personal data. This framework’s mapping (operational cause/effect) is orthogonal to legal

classification: both views can be applied simultaneously without conflict.

11

The Thought Experiment

Imagine the complex world of information technology as a single object. This object,
although robust and seemingly closed, has various attack surfaces – the generic
vulnerabilities.

1. We are at asset software. First, we concentrate on the essentials and take care of the
functional domain and scope and realize that every function can be abused and that more
scope also means more attack surface. Here our first threat cluster arises: **Abuse of
Functions**

2. Every software, although optimized, may contain code flaws that can be exploited,
especially if it is directly exposed (Server side). This leads us to the threat cluster:
Exploiting Server

3. Even on the client side, there is a risk that existing software code flaws can be
exploited. This type of attack, where the client accesses a malicious resource, manifests itself
in the threat cluster: **Exploiting Client**

4. Our software interacts with identities and credentials, both human and technical.
When these identities are compromised, they can be abused. This leads to the threat cluster:
Identity Theft

5. Communication is crucial in our connected world. Yet, as data is transmitted between
points A and B, rogue parties might eavesdrop or inject themselves. This reveals the threat
cluster: **Man in the Middle**

6. This continuous connectivity also makes us susceptible to attacks that want to flood
our infrastructure or software (application) and put it out of action. This leads us to the
threat cluster: **Flooding Attack**

7. In the digital landscape, there is a continuous exchange of files and data. Some of
these files could contain malware code and thus pose a threat. Here the threat cluster arises:
Malware

8. We must not forget that there are physical points of access and interaction through
which intruders might come. Therefore, we have the threat cluster: **Physical Attack**

12

9. And we should not forget about the human factor. We are susceptible to deception,
manipulation, and misconduct. This human element leads us to the threat cluster: **Social
Engineering**

10. Our software or hardware ecosystems are almost always linked with third-party
software or hardware. Do we have control over these? This leads to the last threat cluster:
Supply Chain Attack

Through this thought experiment and careful examination of vulnerabilities in the IT
landscape, I have derived these 10 distinct top level threat clusters. It offers us a clear
structure and a deeper understanding of the diverse threats that our IT systems, people, and
processes face.

13

Definitions

The control examples are merely exemplary and intended to facilitate quick understanding.
Systematic control selection is discussed in the chapter "Cyber ​​Threat Cluster Control
Framework."

#1 Abuse of Functions

Definition: An attacker abuses the logic or scope of existing, legitimate software functions,
features, or configurations for malicious purposes. This manipulation occurs through
standard interfaces using expected input types (data, parameters, configurations, sequence
of actions), but in a way that subverts the intended purpose or security controls.

Generic Vulnerability: The scope, complexity, or inherent trust placed in legitimate
software functions, features, and configurations. More scope/complexity can create a larger
attack surface.

Context: This threat addresses the manipulation of the functional domain itself – what the
software is designed to do. The attacker misuses capabilities intentionally built into the
system, often exceeding implicit boundaries or leveraging overly permissive designs via
standard interfaces using expected input types (data, parameters, configurations, sequence
of actions). Crucially, this does not involve executing foreign Malware Code (unlike #7),
nor does it rely on foreign code that is exploiting specific implementation flaws/bugs
(unlike #2/#3 Exploiting Server/Client). When initiated via Social Engineering (#9), this
often involves tricking a user into enabling, disabling, or misconfiguring legitimate, existing
features (e.g., enabling RDP access, creating firewall exceptions, changing security settings),
rather than installing new software (which would facilitate #7).

Sub-Threats Examples: Data Poisoning, Abuse of document sharing functions, BGP
Hijacking, Misuse of API functionalities, Parameter Tampering (exploiting logic), Enabling
insecure configurations

Control Examples: Input validation (for logic), Strong configuration management, Least
privilege for functions/APIs, Feature usage monitoring, Business logic checks, Multi-step
approvals for sensitive configurations

Attacker's View: "I abuse a functionality, not a coding issue."

14

Developer's View: "I must understand and constrain the functional domain of my code.
Every feature I implement must have clearly defined boundaries and expected usage
patterns. I need to ask: What is the legitimate scope of this functionality, and how could it
be misused?"

Asset Type: Software (Its functions and configuration)

#2 Exploiting Server

Definition: An attacker targets and leverages flaws originating directly within the
server-side application's source code implementation. These vulnerabilities (e.g., improper
input handling, insecure API usage, resource leaks, logic errors introduced during coding)
allow manipulation of server behavior or unauthorized access using Exploit Code.

Generic Vulnerability: The presence of exploitable flaws within the server-side source
code implementation and its resulting logic, stemming from insecure coding practices.

Context: This cluster isolates vulnerabilities that are fundamentally mistakes made by
developers during coding on the server side. It addresses the direct consequences of insecure
software development practices related to how code handles data, manages resources, or
implements application logic. An attacker uses Exploit Code to trigger these specific
code-level bugs. This focus on source code implementation flaws distinguishes it from:

●​ #1 Abuse of Functions, which misuses the intended design and logic of correctly
coded functions.

●​ #7 Malware, which executes malicious code via a designed execution capability, not
a bug in the application code.

●​ #3 Exploiting Client, which targets flaws in the client-side source code
implementation.

Sub-Threats Examples: SQL Injection (coding flaw in query building), Buffer Overflows
(coding flaw in memory handling), RCE via Deserialization (coding flaw in data
processing), SSRF (coding flaw in URL processing), XXE Injection (coding flaw in XML
parsing), Stored/Reflected XSS (coding flaw in handling output)

Control Examples: Secure Coding Training & Standards, Static Application Security
Testing (SAST), Dynamic Application Security Testing (DAST), Manual Code Review,

15

Input Validation/Sanitization Libraries, Output Encoding, Content Security Policy (CSP),
Secure Component Usage, Patching, WAF

Attacker's View: "I abuse a flaw in the application's source code on the server side."

Developer's View: "I must apply language-specific secure coding principles for all
server-side code, understanding the security pitfalls of my chosen language (e.g., SQL
injection in PHP, deserialization in Java, buffer overflows in C++) and implementing
appropriate safeguards."

Asset Type: Software (Specifically, the server-side application source code implementation)

#3 Exploiting Client

Definition: An attacker targets and leverages flaws originating directly within the source
code implementation of any software acting in a client role (requesting/processing data
from a server or resource). These vulnerabilities (e.g., improper handling of responses or
local data, insecure interaction with local resources, logic errors introduced during coding)
allow manipulation of client behavior, unauthorized access to client resources, or
information disclosure using Exploit Code, often when the client interacts with malicious
content, servers, or manipulated local state.

Generic Vulnerability: The presence of exploitable flaws within the source code
implementation of software acting as a client, stemming from insecure coding practices
related to processing external data/responses, rendering UI, or managing client-side state
and resources.

Context: This cluster isolates vulnerabilities that are fundamentally mistakes made by
developers during coding within any software component performing a client function –
receiving and processing data/responses. Examples include web browsers, mobile apps,
desktop applications, document readers, command-line clients (SSH, SQL), client libraries
(e.g., HTTP, database connectors), API consumers, and background services acting as
clients. It addresses insecure development practices in how this client code handles data,
interacts with APIs, or renders information. An attacker uses Exploit Code to trigger these
code-level bugs. This focus on client-role source code implementation flaws distinguishes it
from:

●​ #1 Abuse of Functions, which misuses the intended design and logic.
●​ #7 Malware, which executes malicious code via a designed execution capability.

16

●​ #2 Exploiting Server, which targets flaws on the server side.

Sub-Threats Examples: DOM-Based XSS (client script coding flaw), Client Library
Buffer Overflows (e.g., in libcurl handling responses), Insecure Deserialization in
Client/API Consumer, Command-line Client argument/response handling flaws, Exploits
targeting browser/plugin rendering engines.

Control Examples: Secure Coding Training & Standards (Client-Side Focus),
SAST/DAST for client code/libraries, Framework/Library Protections, Secure handling of
data from all external sources (servers, files, URLs, APIs), Avoiding dangerous functions,
Keeping all client software/libraries patched.

Attacker's View: "I abuse a flaw in the source code of software acting as a client." (Often
triggered by crafted input/data/response)

Developer's View: "I must apply language-specific secure coding principles for all
client-side code, understanding how my language handles external data (e.g., DOM-based
XSS in JavaScript, buffer overflows in native clients) and never trusting incoming data."

Asset Type: Software (Specifically, the source code implementation of software acting in a
client role)

#4 Identity Theft

Definition: An attacker targets weaknesses in identity and access management processes or
credential protection mechanisms to illegitimately acquire, steal, or misuse authentication
credentials (e.g., passwords, tokens, keys, session identifiers, biometrics) to impersonate a
legitimate identity (human or technical).

Generic Vulnerability: Weak Identity Management Processes and/or inadequate
credential protection mechanisms throughout the identity lifecycle (issuance, storage,
transmission, validation, revocation), allowing credentials to be illegitimately acquired or
misused.

Context: This cluster focuses specifically on the compromise of the authentication process
itself through the theft or unauthorized acquisition/use of credentials. It includes the
technical mechanisms designed solely to capture credentials, such as credential harvesting
websites (phishing forms). While the delivery of such a form often relies on #9 Social
Engineering (to trick the user into visiting and trusting the form), the form itself represents

17

an attack targeting the credential acquisition process and thus falls under #4. The
subsequent use of captured credentials is also #4. This focus on credential compromise
distinguishes it from:

●​ #1/#2/#3 Exploiting Functions/Server/Client: Where credentials might be
exposed secondarily due to function abuse or code flaws.

●​ #7 Malware: Which might be a tool used to steal credentials (e.g., keylogger),
facilitating #4.

Note: Bypassing authentication without compromising credentials typically maps to #1 or
#2. Non-overlap rule (credentials and identity artifacts): The acquisition/collection of
credentials or identity artifacts is mapped to the cluster that enables that acquisition (e.g.,
#5 Man-in-the-Middle for interception, #1 Abuse of Functions for logic abuse to export
tokens, etc.). Any subsequent use of those same credentials or artifacts—regardless of how
they were obtained—is always mapped to #4 Identity Theft.

Sub-Threats Examples: Credential Stuffing, Password Spraying, Session Hijacking,
Pass-the-Hash/Ticket attacks, Stealing API Keys/Secrets, Credential Harvesting
Forms/Websites

Control Examples: Multi-Factor Authentication (MFA), Strong password policies,
Credential rotation, Secure credential storage, Session management, Anti-phishing training
(#9) & technical controls (URL filtering, browser warnings against known #4 harvesting
sites), Monitoring for credential abuse

Attacker's View: "I abuse credentials, the mechanisms designed to steal them, or the
processes managing them to operate as a legitimate identity."

Developer's View: "I must implement secure credential lifecycle management: proper
storage (hashing with salt), secure transmission, session handling (timeout, invalidation),
and robust authentication mechanisms (MFA support). Every identity-related function
needs defense-in-depth."

Asset Type: Software (Identity/Access Management Systems, Credential Harvesting
Mechanisms), Data (Credentials)

#5 Man in the Middle (MitM)

18

Definition: An attacker intercepts, eavesdrops on, modifies, or relays communication
between two parties without their knowledge or consent, by exploiting a privileged position
on the communication path. This position might be gained locally (e.g., on shared Wi-Fi)
or by leveraging control over existing network intermediaries.

Generic Vulnerability: The lack of sufficient control, integrity protection, or
confidentiality over the communication channel/path, including the implicit trust placed in
local networks (like public Wi-Fi) and intermediate network infrastructure in standard IP
networking.

Context: This cluster describes attacks enabled by an attacker controlling a point on the
communication path. Common examples familiar to end-users include attackers on the
same public Wi-Fi network intercepting traffic, or potentially a compromised VPN service
acting maliciously. More broadly, in standard Internet (IP) communication, intermediaries
(routers, ISPs) always exist, creating potential MitM points if compromised (e.g., via BGP
hijacking - #1). #5 focuses on the actions possible from this intermediary position (local or
remote): eavesdropping, modification, injection, replay, protocol downgrades. This cluster
is distinct from the methods used to initially gain the position (which fall under #1, #8, etc.).
Network architectures like SCION aim to mitigate vulnerabilities in intermediate path
infrastructure.

Sub-Threats Examples: Public Wi-Fi Eavesdropping/Injection, SSL/TLS Interception
(via rogue AP or compromised intermediary), DNS Spoofing from local network attacker,
Malicious VPN Traffic Manipulation, Modifying data via compromised router

Control Examples: End-to-End Encryption (E2EE), Using trusted VPNs, Transport
Layer Security (TLS) with strong validation (HSTS, Cert Pinning), Avoiding untrusted
public Wi-Fi for sensitive tasks, Network path monitoring, Data integrity checks,
Architectures providing path control (e.g., SCION)

Attacker's View: "I abuse my position (on the local network or via control over an
intermediary) between communicating parties."

Developer's View: "I must ensure the confidentiality and integrity of data in transit at all
relevant layers. This includes enforcing strong encryption protocols like mTLS at the
application layer and utilizing secure network architectures (e.g., IPsec, or path-aware
networking like SCION) at the network layer. I must ensure proper certificate and path

19

validation, and design for end-to-end protection, assuming any uncontrolled network
segment is hostile."

Asset Type: Network/Communication Channel & Path Infrastructure (including local
networks)

#6 Flooding Attack

Definition: An attacker intentionally overwhelms system resources or exceeds capacity
limits through a high volume of requests, data, or operations, leading to disruption,
degradation, or denial of service for legitimate users.

Generic Vulnerability: Finite capacity limitations inherent in any system component
(e.g., network bandwidth, CPU, memory, storage, database limits, application quotas, API
rate limits, process/thread pools).

Context: This cluster covers attacks whose primary goal is to exhaust a specific, limited
resource required for service operation. While often associated with network-level
Distributed Denial of Service (DDoS), it generically applies to overwhelming any capacity
constraint. This includes application-level attacks like flooding databases with excessive
posts/data, exhausting API rate limits, filling log storage, or triggering computationally
expensive operations en masse. The attack leverages volume or intensity, often via legitimate
protocols or application functions (sometimes scaled via #1 Abuse of Functions), rather
than exploiting specific code flaws (#2/#3) or executing malware (#7). The outcome is
typically Loss of Availability.

Sub-Threats Examples: Network DDoS (SYN Flood, UDP Flood, Amplification
Attacks), Application Layer DDoS (HTTP Flood, Slowloris), Database Storage Exhaustion
via excessive writes, Log Volume Attacks filling disk space, API Rate Limit Flooding,
Computationally Expensive Request Flood, XML bomb for parser exhaustion

Control Examples: Network Traffic Filtering/Scrubbing (DDoS Mitigation Services),
Rate Limiting (Network & Application Level), Resource Quotas (Disk, DB storage, API
calls), Efficient Resource Management in Code, Connection Pooling Limits, Input
validation to prevent overly large/complex requests, Scalable Infrastructure Design,
Anomaly Detection (Volume-based)

20

Attacker's View: "I abuse the circumstance of always limited capacity in software and
systems."

Developer's View: "I must implement efficient resource management. This includes using
appropriate data structures, setting request limits, timing out long-running operations, and
releasing resources properly. Every loop and resource allocation must consider abuse
scenarios. Reminder: Sometimes we need an umbrella control here."

Asset Type: Software, Network, Hardware (Their finite resources/capacity)

#7 Malware

Definition: An attacker abuses the inherent ability of a software environment to execute
foreign executable content, including inherently malicious Malware Code or legitimate
tools/scripts used for malicious purposes ("dual-use" / LOLBAS).

Generic Vulnerability: The software environment's designed capability to execute
potentially untrusted 'foreign' code, scripts, or binaries.

Context: This cluster deals with unauthorized execution achieved via an environment's
intended execution capabilities. This includes running inherently malicious Malware Code
AND the malicious use of legitimate "dual-use" tools or scripts (e.g., PowerShell, PsExec,
legitimate remote admin tools) introduced or invoked by the attacker. In both cases, the
attacker leverages the design of the software environment to run executable content for
malicious ends. When initiated via Social Engineering (#9), this often involves tricking a
user into downloading and executing new, foreign software/scripts, rather than just
reconfiguring existing system features (which would be #1). This is distinct from:

●​ #2/#3 Exploiting Server/Client, which utilize Exploit Code targeting
implementation flaws.

●​ #1 Abuse of Functions, which manipulates the logic of existing functions using
data/parameters, without executing foreign code/scripts/binaries.

Sub-Threats Examples: Ransomware, Trojans, Malicious Macros, Execution via
PowerShell scripts, Use of PsExec for lateral movement, Malicious use of legitimate Remote
Desktop tools (when installed by attacker/victim)

Control Examples: Blocking file types, Application control/allow-listing (critical for
dual-use tools), Anti-malware scanners, Script/macro execution policies, Behavioral analysis

21

(detecting legitimate tools used abnormally), Sandboxing, PowerShell Constrained
Language Mode

Attacker's View: "I abuse the environment's designed capability to execute Malware Code,
malicious scripts, or legitimate tools for my purposes."

Developer's View: "I must control code execution paths. This means validating file types
and content, avoiding dynamic code execution (e.g., eval), implementing proper
sandboxing, and using Content Security Policies. I will never execute user-controlled input
uncontrolled."

Asset Type: Software (The execution environment, Dual-Use Tools)

#8 Physical Attack

Definition: An attacker gains unauthorized physical interaction with or causes physical
interference to hardware, devices, facilities, or data transmission media (including wireless
signals).

Generic Vulnerability: The physical accessibility of hardware, facilities, and
communication media (cabling, wireless spectrum), and the exploitability of Layer 1
(Physical Layer) communications and hardware interfaces.

Context: This cluster covers threats involving manipulation or disruption at the physical
level. It encompasses two main types based on the interaction required:​
1. Direct Physical Access Attacks: Require the attacker to physically touch or interact
directly with the hardware, device, or its immediate secure environment (e.g., tampering,
theft, connecting unauthorized devices, physical intrusion into facilities).​
2. Indirect Physical Access Attacks: Exploit physical properties or emanations without
requiring direct contact with the core device (e.g., electromagnetic eavesdropping like
TEMPEST, signal jamming, environmental disruption, acoustic attacks).​
Physical access can often bypass logical security controls and may be a precursor to other
attacks (e.g., installing malware via USB - #7, stealing devices with credentials - #4).

Sub-Threats Examples: Hardware Tampering, Port Access (e.g., unauthorized
USB/network connection), Physical Device Theft, Facility Intrusion, TEMPEST attacks,
Signal Jamming, Wireless Interception (passive), Cutting Cables, USB Baiting

22

Control Examples: Physical access controls (locks, guards, secure facilities), Device
security (cable locks, port security), Data encryption at rest, Tamper detection/seals,
Shielding against emanations (for TEMPEST), Wireless security protocols & monitoring,
Secure hardware disposal

Attacker's View: "I abuse the physical accessibility or properties of hardware, devices, and
signals."

Developer's View: "I must implement tamper-evident logging, encrypt sensitive data at
rest, use secure key storage (HSM/TPM), and design for secure failure modes. I will assume
physical access means compromise and plan accordingly."

Asset Type: Physical (Hardware, Facilities, Media, Signals)

#9 Social Engineering

Definition: An attacker psychologically manipulates individuals into performing actions
counter to their or their organization's best interests, such as divulging confidential
information, granting access, executing code, or bypassing security procedures.

Generic Vulnerability: Human psychological factors: gullibility, trust, ignorance, fear,
urgency, authority bias, curiosity, or general compromisability.

Context: This cluster focuses exclusively on exploiting the human element through
deception, manipulation, or influence. It leverages psychological triggers rather than
technical vulnerabilities in code or systems. Social Engineering is very often the initial
vector for more complex attacks, tricking users into actions that enable other threat
clusters:

●​ Tricking a user to reveal credentials used in #4 Identity Theft.
●​ Tricking a user to install/run malicious code, enabling #7 Malware.
●​ Tricking a user to misconfigure systems or enable features, facilitating #1 Abuse of

Functions.

Crucially, technical vulnerabilities (e.g., CVEs) are never mapped to this cluster; #9 is purely
about human manipulation leading to an unsafe action.

23

Sub-Threats Examples: Phishing (lure/deception phase), Pretexting, Baiting, Quid Pro
Quo, Tailgating, Spear Phishing, Whaling, Vishing, Smishing, Water holing (luring users to
a compromised site)

Control Examples: Security Awareness Training, Phishing Simulations, Clear procedures
for handling requests (esp. for sensitive info/actions), Multi-person approvals for critical
actions, Technical anti-phishing controls (email/URL filtering), Caller ID / Sender
verification

Attacker's View: "I abuse human trust and psychology to deceive individuals."

Developer's View: "I must design interfaces that promote secure behavior. This means
providing clear security indicators, confirmation dialogs for sensitive actions, and making
the secure path the easiest path. UI/UX is a security control."

Asset Type: Human

#10 Supply Chain Attack

Definition: An attacker compromises systems by targeting vulnerabilities within an
organization's supply chain. This involves compromising third-party software components,
hardware, services, or distribution/update mechanisms that are trusted and integrated into
the organization's own environment or products.

Generic Vulnerability: The necessary reliance on, and implicit trust placed in, external
suppliers, vendors, components, libraries, hardware, services, and their associated
development or distribution processes.

Context: This cluster focuses on attacks where the initial vector leverages the trust
relationship with external entities whose products or services are incorporated into the
target's systems or development lifecycle. It's distinct from merely using a compromised
third-party platform for attacks (e.g., using a compromised cloud server for C2 is not #10
unless the cloud service itself delivered malware via its trusted updates). Key vectors include:

24

1.​ Development Vector (Pre-Deployment): Compromising source code repositories,
build systems, testing environments, or injecting vulnerabilities into third-party
libraries/components before they are integrated by the target.

2.​ Update Vector (Post-Deployment): Compromising legitimate update mechanisms
or distribution channels to deliver malicious updates for software, firmware, or
hardware already in use.

3.​ Hardware Vector: Compromising hardware components or manufacturing
processes.

A successful #10 attack often leads to #7 Malware deployment or other cluster activities
within the target environment via the trusted channel.

Sub-Threats Examples: Compromised Software Updates (e.g., SolarWinds), Malicious
Code in Third-Party Libraries/Dependencies (e.g., Log4j scenario if intentionally
malicious), Backdoored Hardware Components, Compromised Build/CI/CD Pipelines
injecting code, Tampered installation media.

Control Examples: Third-Party Risk Management (TPRM), Software Composition
Analysis (SCA), Software Bill of Materials (SBOM), Secure CI/CD pipeline practices,
Code signing & verification of updates/dependencies, Hardware integrity checks, Vendor
security assessments

Attacker's View: "I abuse the trust in third-party components, services, or vendors
incorporated by the target."

Developer's View: "I must maintain strict dependency hygiene. This involves using
dependency scanning, verifying package integrity, minimizing the dependency footprint,
and implementing SBOM practices. I will trust no external code implicitly."

Asset Type: Software, Hardware, Services (Specifically, the third-party elements and
distribution mechanisms integrated by the target)

Clarifications

Threat Cluster: "A threat cluster organizes a set of threats that exploit the common
vulnerabilities related to IT systems and humans."

25

Threat: "A threat is a set of tactics, techniques and procedures (TTP) that attackers apply to
provoke an event or incident, exploiting vulnerabilities in IT systems or human behaviors."

Cyber Risks describe the likelihood of occurrence of a cyber event in which control over IT
systems or persons is lost due to one or more of the 10 Top Level Cyber Threat Clusters,
leading to consequential damage (impact).

An Attack Path is the Sequence of applied Attack Vectors.

Scope of Server Software: Includes Server APIs, incorporated Library APIs, Socket APIs,
and Local APIs that run on server-side systems to provide services and resources to clients.

Scope of Client Software: Encompasses Client APIs, incorporated Library APIs, Socket
APIs, and Local APIs that operate on the client side of a communication.

Malicious Code: Distinguished between "Exploit Code", which targets specific
vulnerabilities to modify software behavior, and "Malware Code", which operates within
expected execution paths for harmful purposes. "Malware Software" refers to the
comprehensive suite of tools (foreign code) that may incorporate multiple techniques,
including exploit capabilities.

Malvertising: Identified as a method that can deploy either exploits or malware, depending
on the attacker's strategy. It's a vector rather than a distinct category of threat.

Phishing: Recognized for its versatility in threat delivery, capable of initiating various attack
clusters based on the context of the content it delivers.

Privilege escalation: In the context of the 10 Top Level Cyber Threat Clusters framework,
privilege escalation is addressed through multiple clusters, depending on the specific
techniques employed by attackers. In the "Exploiting Server" and "Expoiting Client"
clusters, privilege escalation often involves exploiting software vulnerabilities, such as buffer
overflows or injection flaws, to gain unauthorized higherlevel permissions. However, the
Abuse of Functions cluster represents a distinct approach to privilege escalation, where
attackers leverage legitimate system features or misconfigurations to elevate their access
rights, without necessarily exploiting coding vulnerabilities. Additionally, the Social
Engineering cluster can enable privilege escalation by manipulating users into revealing
credentials or granting access to restricted resources. While these clusters may lead to similar
outcomes, distinguishing the underlying techniques allows for more targeted control
implementation and risk management strategies within the framework.

26

Third-Party Risk and Supply Chain Threat Cluster: A cyber event at a third party only
represents a Supply Chain threat when it involves components or services integrated into
your IT systems (e.g., software dependencies, update mechanisms, development pipelines)
rather than externally managed services. It's crucial to recognize that each third party faces
all ten threat clusters themselves, and their compromise through any of these clusters could
potentially enable Supply Chain attacks against your organization. This distinction is
crucial for accurate threat classification and control implementation within the framework.

Process Injection: Can occur either as #1 (Abuse of Functions) through abuse of legitimate
features (like debugging APIs and DLL injection) where the injection capability was
intentionally designed, or as #2/#3 (Exploiting Server/Client) through exploitation of code
flaws/vulnerabilities (like buffer overflows) where injection was never intended. The key
distinction is whether the injection vector was a designed feature being misused versus an
underlying software vulnerability being exploited.

A.I. AI AGI - Positioning:

●​ As an IT system, it is exposed to the same threats as any other IT system (IT system
= Software/Hardware).

●​ As a tool, it enhances the capabilities of threat actors AND defenders.
●​ As AGI or ASI, it would become a powerful threat actor OR defender.

27

Bridging Strategy and Operations: A Comprehensive
TwoTiered Approach

The 10 Top Level Cyber Threat Clusters framework bridges the gap between strategic
planning and operational execution in cybersecurity. This two-tiered approach ensures a
consistent strategic understanding of cyber risks while allowing flexibility to adapt to
emerging threats and evolving attack methodologies at the operational level.

Strategic Management Layer

The strategic layer focuses on high-level risk management, policy-making, and program
governance. Key components include:

●​ Threat Clusters: Categorization and management of the 10 Top Level Cyber Threat
Clusters

●​ Generic Vulnerabilities: Identification of vulnerabilities associated with generic asset
types

●​ Risk Appetite and Tolerance: Defining acceptable risk levels for each threat cluster
●​ Cyber Security Program Management: Establishing overarching control objectives

and generic controls (from the Standard Catalogues)
●​ Compliance and Governance: Alignment with standards like NIST and ISO
●​ Resource Allocation: High-level decisions on budget and resource distribution

28

Operational Layer

The operational layer is where security controls are implemented, monitored, and adjusted.
Key aspects include:

●​ Specific Vulnerabilities: Identification and management of vulnerabilities in specific
assets

●​ Threat Management: Detailed analysis of individual threats within each cluster
●​ Control Implementation: Based on guides like Vendor proposals and your security

architecture and additional sources like e.g. CIS Benchmarks
●​ Threat Intelligence: Using frameworks like MITRE ATT&CK, CWE and

STIX/TAXII
●​ TTPs Mapping: Aligning Tactics, Techniques, and Procedures to specific threat

clusters
●​ Attack Path Analysis: e.g., #9 (Phishing) -> #3 Exploiting Client -> #7 (Malware)
●​ Vulnerability Management:e.g. Addressing CVE reports
●​ Incident Response: Planning for and executing responses to cyber incidents per

cluster and related asset
●​ Security Testing: Using methodologies like OWASP or STRIDE are per se

incomplete, so always start with the TLCTC
●​ Monitoring and Reporting: Continuous assessment of control effectiveness - yes

you have to do risk management completely

Cyber Risk Events and Incidents

At the center of the bow-tie model are Cyber Risk Events and Cyber Incidents:

Cyber Risk Events: Potential occurrences that could lead to a breach or system compromise
Cyber Incidents: Actual security breaches or system compromises that have occurred

Consequences

The right side of the bow-tie model addresses the potential consequences of cyber risk
events and incidents, which are managed at both the strategic and operational levels. Take
care of event chains as described in the chapter about the Cyber-Bow-Tie Event Chain.

29

Integration Between Layers

The framework creates a common language and facilitates dynamic interaction between
these layers:

●​ Strategic decisions on risk appetite and tolerance inform operational priorities
●​ Operational insights on threats, vulnerabilities, and attack paths are contextualized

for strategic decision making
●​ Clear line of sight from high-level risks to specific technical controls and vice versa
●​ Allows for rapid adaptation to new threats while maintaining strategic consistency
●​ Facilitates comprehensive risk management from generic vulnerabilities to specific

asset protection

By adopting this comprehensive two-tiered approach, organizations can ensure their
cybersecurity efforts are both strategic in planning and adaptable in execution, creating a
more resilient and effective security posture that addresses both potential and actual cyber
risk events.

The Anatomy of Risk

Cause Side (Threats): The Top 10 Cyber Threat Clusters, which can lead to a System
Risk Event if preventive controls are insufficient.

30

Risk Event (System Compromise): The central risk event is the compromise of an IT
system or human, resulting in a loss of control - Cyber incident.

Consequences (Data Risk Events): The compromised system can lead to data risk events
such as loss of confidentiality, integrity, or availability.

Consequences (Business Risk Events): Data risk events can cascade into multiple levels
of business risk events and consequences, including financial losses, reputational damage,
and operational disruptions.

Cyber Risk describes the probability of occurrence of a cyber event in which IT systems or
human actors are compromised due to one or more of the 10 Top Level Cyber Threat
Clusters, leading (via Event-Chains) to consequential damage (impact).

Preventive Controls: Controls implemented to mitigate the likelihood of a risk event
occurring, aligned with the Top 10 Cyber Threat Clusters. Using NIST functions this
includes IDENTIFY (indirect) and PROTECT (direct).

Detective, Reactive, and Corrective Controls: Controls designed to identify risk events
(Detective/DETECT), respond (RESPOND) to and recover (RECOVER) from them at
the system level (Reactive), and ensure business process continuity (Continuity),
minimizing overall impact.

Control Failure: A control failure is a deviation from the control objective, which can
allow threats to materialize and impact assets.

Control Objective: A control objective is the specific aim or purpose that a control is
intended to achieve. It defines what the control should accomplish in terms of risk
mitigation for a particular threat cluster. Each control is aligned with a single, clear
objective.

Control Design Effectiveness: Design effectiveness evaluates whether a control, as
conceived and structured, is capable of achieving its objective if it operates as intended. It
assesses the theoretical capability of the control to address the identified risk within its
specific threat cluster.

Control Operational Effectiveness: Operational effectiveness focuses on whether the
control is actually working as designed in practice. It examines if the control is being
executed correctly and consistently over time to meet its objective.

31

Relationship to Control Objectives: Both design effectiveness and operational
effectiveness are methods of evaluating how well a control meets its single, defined objective.
They are not separate objectives themselves, but rather two aspects of assessing the control's
ability to achieve its intended purpose within the framework of the Top Level Cyber Threat
Clusters.

Considerations: The achievable level of operational effectiveness may vary depending on the
nature of the threat cluster. For example, controls for Malware (#7) may never achieve 100%
operational effectiveness due to "1st Wave" aspects and detection latencies. Some controls, like
Multi-Factor Authentication for Identity Theft (#4), can theoretically achieve near-perfect
operational effectiveness within their specific scope. The interplay between different threat
clusters (e.g., Social Engineering #9 potentially circumventing Identity Theft #4 controls)
necessitates a holistic approach to control design and implementation.

The Bow-Tie model provides a structured approach to identifying, assessing, and managing
cyber risks by connecting threats, cyber risk events/incidents, consequences, and controls in
a comprehensive framework. This enables organizations to develop targeted risk mitigation
strategies and align their defenses with the ever evolving cyber threat landscape, while also
ensuring effective response, recovery, and continuity measures are in place.

Cyber Bow-Tie and Risk-Management

​
Example: the bow-tie here is not complete - its exemplary related to the other operational causes,
events and paths

32

Clarification on Central Event Position

The positioning of "Loss of Control" or "System Compromise" as the central event in the
Bow-Tie model requires careful explanation. This placement reflects a crucial
understanding: when a threat successfully materializes (a threat event), it often results in
some form of compromise or loss of control, which may or may not immediately lead to
data risk events.

Examples of Delayed Data Risk Events:

●​ When credentials are stolen through Identity Theft (#4), the identity is already
compromised even if the attacker hasn't yet used these credentials to access systems

●​ When a Server Exploit (#2) enables Remote Code Execution leading to Malware
(#7), the system is compromised even before any data breach or system disruption
occurs

●​ When Supply Chain Attack (#10) compromises a software update mechanism,
control is lost even before malicious updates are deployed

Examples of Immediate Data Risk Events:

●​ A successful SQL Injection (Exploiting Server #2) can immediately result in:
○​ Loss of Confidentiality: Through unauthorized data access and exfiltration
○​ Loss of Integrity: Through unauthorized data modification
○​ Loss of Availability: Through unauthorized data deletion

●​ A successful Flooding Attack (#6) immediately results in Loss of Availability
●​ A successful Man in the Middle Attack (#5) can immediately result in Loss of

Confidentiality through eavesdropping and Loss of Integrity through data
manipulation

This distinction is operationally significant because:

1. It creates a critical detection window between initial compromise and data risk events in
cases where effects are not immediate

2. It reflects the reality of modern attacks where adversaries often maintain persistence (via
complex attack paths) before executing their ultimate objectives

3. It enables more precise mapping of detective and reactive controls in the period between
compromise and data risk events

33

4. It acknowledges that some threats can lead to immediate data risk events, requiring rapid
response capabilities

Therefore, the central position of "Loss of Control" serves as a crucial pivot point between
threat realization and potential consequences, supporting both the sequence concept of the
framework and the practical reality of cyber attacks. This positioning accommodates both
scenarios where data risk events are delayed and where they occur immediately upon
compromise.

Don't forget:

●​ Attack paths often involve multiple threat clusters in sequence - a single threat
cluster alone rarely tells the complete story of an attack

●​ The velocity of progression from compromised system to data risk event is a key
factor in risk evaluation and control design

●​ The compromise-centric event ("Loss of Control") helps distinguish cyber events
from other IT events and general operational risk causes and event chains, providing
clearer scope for cyber risk management

The Cyber Bow-Tie model serves as a powerful visual tool for structuring a comprehensive,
event-centric cyber risk register. By integrating the 10 Top Level Cyber Threat Clusters
with IT and business risk events, this framework enables organizations to systematically
identify, assess, and manage their cyber risk landscape.

KRI, KCI and KPI

Key Performance Indicators (KPIs):

In the context of the Top Level Cyber Threat Clusters (TLCTC), KPIs are defined as
measurable values that demonstrate *the outcome and performance* of our security
processes in reaching security objectives. KPIs must be time-based and should reflect not
only the results but also the effectiveness over time. For instance, when tracking our
response time to incidents, the KPI is the “*Average time to restore critical services to full
operation within a 4-hour window*”, emphasizing the time constraint.

Key Control Indicators (KCIs):

KCIs measure the operational performance of our security controls, verifying that the
intended actions are taken at the appropriate frequency. These indicators provide insights

34

on our ability to apply the correct controls correctly, and also highlight weaknesses in
processes, helping to improve our defenses over time. We must also check the effectiveness
of our tools. For example, if we have a control that requires "every critical system to be
patched within 24 hours", a KCI would be "frequency of patch deployments per day" or a
"scan verification of implemented patches".

Key Risk Indicators (KRIs):

KRIs focus on indicators that demonstrate the potential for a future cyber threat. They are
primarily leading indicators that show the possible risks before a threat occurs. KRIs must
be observed in a timeframe that is meaningful. For example, the *"Number of unpatched
critical vulnerabilities older than 7 days"* can give a good indication on how our processes
handle a critical vulnerability. This helps us identify, understand and prioritize our security
efforts to prevent incidents.

Hierarchical Framework for Key Indicators

Notation and Terminology

KxI represents the integrated framework of:

●​ Key Risk Indicators (KRIs)
●​ Key Control Indicators (KCIs)
●​ Key Performance Indicators (KPIs)

Base Level Indicators (BxIs): The lowest level of indicators that still make sense. The metrics
at the operational level are directly translated into BxIs.

The KxI framework, as outlined below, provides a practical mechanism for organizations to
operationalize the 10 Top Level Cyber Threat Clusters. Each Threat Cluster will have
associated KRI, KCI and KPI values that help manage the cyber risk. These values can also
be used as indicators for the overall performance of a cybersecurity program.

Framework Architecture

Strategic Level

The "Key" designation positions KxIs at the strategic level, reflecting their importance for
enterprise decision-making:

●​ KRIs: Derived from and aligned with enterprise risk appetite statements

35

●​ KCIs: Measure effectiveness of critical controls across technical, operational, and
business domains

●​ KPIs: Track achievement of strategic objectives

Indicator Hierarchy

Indicator Hierarchy is now related to our Threat Clusters. All of the following steps need to
be taken for each Threat Cluster, resulting in a full and consistent evaluation. The
following levels of Indicators need to exist:

●​ Strategic Level: KxIs provide a comprehensive view of risk related to a Threat
Cluster.

●​ Tactical Level: Base Level Indicators (BxIs) aggregate operational data that is
associated with a specific Threat Cluster.

●​ Operational Level: Technical, business, and process metrics (quantitative and
qualitative) related to a specific Threat Cluster.

Data Flow and Aggregation

●​ Operational metrics serve as foundation for measurement
●​ Metrics aggregate into Base Level Indicators
●​ BxIs consolidate into respective KxIs
●​ Qualitative assessments convert to semi-quantitative measures enabling consistent

evaluation

Governance Framework Integration

This structure incorporates governance requirements through:

●​ Alignment of indicators with strategic objectives
●​ Integration of risk appetite and tolerance levels
●​ Measurement of control effectiveness
●​ Performance tracking against governance standards
●​ Technical compliance monitoring

The framework incorporates risk assessment at all of the above mentioned levels. For
example: BxIs allow for a good operational risk assessment, and KxIs do the same at the
strategic level.

36

This structure also ties well to other concepts of this document, such as "Control
Objective", "Control Design Effectiveness" and "Control Operational Effectiveness".

The framework accommodates all metric types - from technical infrastructure
measurements to business performance indicators - ensuring comprehensive enterprise
coverage.

37

Data Risk Event Types

Conceptual Framework

In the Top Level Cyber Threat Clusters (TLCTC) framework, "Loss of Control" or
"System Compromise" serves as the central event in the Bow-Tie model, acting as a pivotal
point between threat realization (cause) and potential consequences (effect). These effects
can themselves become events in an event chain concept, where one outcome triggers
subsequent events. This distinction is operationally significant and represents an important
conceptual clarification.

Relationship Between Threat Clusters and Data Risk Events

When viewing the TLCTC framework through the lens of the Bow-Tie model, we can
methodologically position "Loss of Control" or "System Compromise" as a higher-level
classification framework. This represents the initial compromise that may lead to business
impact requiring evaluation.

In this approach:

●​ Threat clusters are subordinate to the overarching "Loss of Control" or "System
Compromise" event

●​ Each threat cluster is then linked to specific data risk events
●​ The hierarchical structure allows for clearer organization of relationships
●​ These connections enable more granular understanding of how different threats

contribute to specific data risks
●​ Credentials do not qualify as 'data' in the business classification sense. Their

compromise leads to a system-level loss of control – not merely a loss of
confidentiality.

Data Risk Events and Their Sources

Understanding the relationship between data risk events and their triggers is crucial for
effective risk management. An important distinction must be made between cyber
threat-triggered data risk events and those stemming from other operational risks.

38

Cyber Threat Cluster-Triggered Data Risk Events

Data risk events often result from one or more cyber threat clusters. Each cluster can lead to
specific types of data risks:

●​ Identity Theft (#4): May lead to unauthorized access, potentially causing Loss of
Confidentiality. Example: An attacker using stolen credentials to access and
exfiltrate sensitive customer information.

●​ Exploiting Server (#2): Could compromise data integrity or confidentiality.
Example: SQL injection attack altering database records.

Non-Cyber OpRisk-Triggered Data Risk Events

Data risk events can also stem from other operational risk factors, which are not classified as
cyber risks:

●​ Abuse of Access Rights: May result in data confidentiality breaches. Example: An
employee misusing their privileges to view confidential salary information.

●​ Error in Use: Can lead to unintentional data exposure. Example: Accidentally
sending an unencrypted file containing personal data via email.

This distinction is vital for developing targeted risk tolerance statements and appropriate
mitigation strategies for each category of data risk events and threat clusters.

Refined Data Risk Event Definitions

It's crucial to separate outcomes (data risk events) from mechanisms or techniques used to
achieve those outcomes. This distinction improves risk definition, threat modeling, and
control mapping. From an attacker's perspective, these outcomes are:

1.​ Loss of Confidentiality (C): Data stolen - The attacker gains unauthorized access
to data

2.​ Loss of Integrity (I): Data modified - The attacker successfully makes
unauthorized changes to data

3.​ Loss of Availability (A): Data inaccessible - The attacker renders data unavailable
to legitimate users

This refinement represents an important improvement over traditional CIA triad
terminology because:

39

●​ Clear Risk Definition: Each risk event describes what bad thing happens, not how
it happens

●​ Separation of Outcomes from Mechanisms: "Deletion" is not an integrity
outcome but a mechanism that leads to loss of availability

●​ Comprehensive Threat Modeling: By focusing on outcomes, we consider all
possible attack vectors that could achieve the attacker's goal

●​ Effective Control Mapping: Controls should be designed to prevent or mitigate
the outcome, regardless of the specific attack techniques

Example Clarifications

●​ Ransomware: Results primarily in "Loss of Availability (A)" rather than integrity
loss

●​ Data Deletion: A mechanism that produces "Loss of Availability (A)" outcome
●​ Data Tampering: Results in "Loss of Integrity (I)" outcome

These data risk events can trigger further events in a chain. For example, Loss of
Confidentiality (data theft) might lead to regulatory fines, reputation damage, and
customer loss - each representing subsequent events in the chain following the initial data
risk event.

Data Risk Events Matrix

The following matrix shows the relationship between the 10 Top Level Cyber Threat
Clusters and the three refined Data Risk Event types:

Threat Cluster/Loss of
Control

Loss of
Confidentiality (C)

Loss of
Integrity (I)

Loss of
Availability (A)

#1 Abuse of Functions ✓ ✓ ✓

#2 Exploiting Server ✓ ✓ ✓

#3 Exploiting Client ✓ ✓ ✓

#4 Identity Theft ✓ ✓ ✓

40

Threat Cluster/Loss of
Control

Loss of
Confidentiality (C)

Loss of
Integrity (I)

Loss of
Availability (A)

#5 Man in the Middle ✓ ✓ ✓

#6 Flooding Attack ✓

#7 Malware ✓ ✓ ✓

#8 Physical Attack ✓ ✓ ✓

#9 Social Engineering ✓ ✓ ✓

#10 Supply Chain
Attack

✓ ✓ ✓

Implications for Cybersecurity Frameworks

This refinement has significant implications for how security frameworks should define and
address data risks:

●​ Framework Alignment: Standards like HITRUST, NIST, ISO, and others should
adopt this clearer distinction

●​ Control Objective Definition: Controls should target preventing or mitigating
outcomes, not specific techniques

●​ Threat Assessment Improvement: Risk assessments should consider all
mechanisms that could lead to each data risk event

●​ Incident Response Focus: Response plans should address consequences of data
risk events regardless of cause

By adopting these refined definitions, organizations can significantly improve the clarity,
consistency, and effectiveness of their risk management practices within the TLCTC
framework.

41

42

Sequences in Cyber Threat Clusters

There are NO overlappings

Question: There are overlapping Threat Clusters, such as Social Engineering and Identity
Theft, with Phishing Emails. How are they related?

Answer: While it may initially appear that threat clusters like Social Engineering and
Identity Theft overlap, particularly in scenarios involving phishing emails, it's important to
understand these as distinct yet sequentially linked components within an attack. The
absence of true overlap is fundamental to the consistency of the 10 Top Level Cyber Threat
Clusters framework.

Phishing emails typically initiate through the cluster of Social Engineering (Cluster #9),
where the attacker manipulates human psychology to provoke an action. Once this action
succeeded, this threat was realized. The action is specific action, such as clicking a link to a
website and other threats (eg. #3, #7, #4), exploiting human susceptibility to deception.
Once the action is taken, the attack may progress to another cluster, such as Identity Theft
(Cluster #4). If the link in the phishing email leads to a fraudulent website designed to
harvest credentials, the threat transitions into Identity Theft. Here, the focus shifts to the
unauthorized acquisition and misuse of personal data.

The clear categorization of these threats in sequences:

●​ Social Engineering (#9): The initial contact and manipulation, using phishing to
trigger a response based on trust or urgency.

●​ Identity Theft (#4): The subsequent exploitation, where stolen credentials or
personal data are used for unauthorized access or financial gain.

Understanding these sequences helps in accurately identifying the progression of an attack,
enabling targeted interventions for each phase of the threat. This approach emphasizes the
need for distinct countermeasures such as user training and awareness to mitigate Social
Engineering and robust authentication processes to prevent Identity Theft.

Sequences in Attacks: An Example View

This presentation details how attacks can be better understood by examining the sequence
of threat clusters they involve. By distinguishing between different pathways and their

43

targeted vulnerabilities, we can tailor more effective defensive measures specific to each
attack vector.

Initial Threat
Cluster

Subsequent
Threat Cluster

Example Scenario Primary Exploited
Vulnerability

Social Engineering
(#9)

Identity Theft (#4) Phishing email with
a link to a
fraudulent form
collecting user IDs
and passwords

Human
susceptibility to
deception - #9,
weakness of the
procedure with
credentials - #4

Social Engineering
(#9)

Exploiting Client
(#3)

Phishing email with
a link to a website
exploiting a
zero-day
vulnerability

Human interaction
- #9, client-side
software
vulnerability - #3

Man in the Middle
(#5)

Identity Theft (#4) Interception of
communication to
redirect to a fake
website - eg proxy
and collect
credentials

Compromise of
data in transit - #5,
access to credentials
- #4

Each scenario showcases the importance of understanding the transition from one threat
cluster to another, thereby helping in designing precise and targeted countermeasures.

A more sophisticated attack: #9->#3->#7->#4->#1->#7 (it starts with mail and ends in
encrypted systems ;-)

44

Concept Applicability

At Interface Level (API)

Based on analysis of the 10 Top Level Cyber Threat Clusters concept, it is indeed applicable
at the interface level. This applicability stems from several key aspects of the framework:

●​ There are 9 Threat Clusters in Scope (all except #9)
●​ Universal Scope: Designed to be universally applicable across different IT systems

and contexts, including interfaces.
●​ Focus on Generic Vulnerabilities: Each threat cluster is associated with a generic

vulnerability, which can be present at various levels of IT architecture, including
interfaces.

●​ Comprehensive Coverage: Covers a wide range of potential attack vectors relevant
to interfaces, such as:

○​ Abuse of Functions could apply to misuse of API functions or interface
protocols.

○​ Exploiting Server and Exploiting Client are directly applicable to server and
client interfaces respectively.

○​ Man in the Middle attacks often target communication interfaces.
●​ Granularity: Allows for sub-threats within each cluster, which can be tailored to

specific interface-level threats.
●​ Alignment with System Architecture: Acknowledges the fundamental client-server

interaction principle, which is inherently tied to interfaces.
●​ Flexibility: Adaptable to different levels of abstraction, suitable for both high-level

strategic planning and detailed technical analysis of interface-level threats.

By applying this concept at the interface level, organizations can systematically identify and
categorize threats specific to their system interfaces, enabling more targeted risk
management and security strategies. This approach aligns well with the concept's goal of
providing a pragmatic solution for targeted threat identification across diverse IT systems
and contexts.

At Function Call Level

Based on careful consideration and analysis, the 10 Top Level Cyber Threat Clusters
concept is applicable at the function call level, with some important considerations:

45

●​ Applicability: The concept can be adapted to function calls, where the caller
function acts as the "client" and the called function as the "server".

●​ Scope: 9 out of the 10 threat clusters are applicable in this context. Social
Engineering (#9) is inherently human-focused and doesn't directly translate to
function-level interactions.

●​ Comprehensive Coverage: The threat clusters map to function call level threats as
follows:

○​ 1. Abuse of Functions (#1): Misuse of function parameters or return values.
○​ 2. Exploiting Server (#2): Code Failure in the called function's

implementation.
○​ 3. Exploiting Client (#3): Code Failure in the caller function's handling of

returned data.
○​ 4. Identity Theft (#4): Unauthorized function calls or parameter tampering.
○​ 5. Man in the Middle (#5): Interception or modification of function call

data.
○​ 6. Flooding Attack (#6): Excessive function calls leading to resource

exhaustion.
○​ 7. Malware (#7): Injection of malware code into function parameters or

return values.
○​ 8. Physical Attack (#8): Hardware-level attacks affecting function execution.
○​ 9. Supply Chain (#10): Compromised libraries or dependencies containing

vulnerable functions.
●​ Considerations for Implementation:

○​ Granularity: This level of application requires very detailed analysis and
might be challenging to implement practically for large-scale systems.

○​ Performance Impact: Implementing security measures at this granular level
could potentially affect system performance.

○​ Abstraction: Some threats may be more relevant at higher abstraction levels
and might not translate meaningfully to individual function calls.

Call-level mapping rule

●​ Parameter tampering, unauthorized function selection, or misuse of valid functions
without executing foreign code is always #1 Abuse of Functions.

●​ Presentation of identity artifacts at call time (e.g., stolen API keys, session tokens,
cookies, Kerberos tickets) to impersonate a subject is always #4 Identity Theft.

46

This rule prevents overlap: logic misuse (#1) vs. identity presentation/use (#4).

In conclusion, while theoretically applicable, practical implementation would require
careful consideration of the trade-offs between security granularity and system
performance/complexity. This approach could be particularly valuable for critical functions
handling sensitive data or operations.

Vertical Stack Application: A Layered Security Approach

Core Concepts

Client-Server Relationship

The client-server relationship in a vertical stack is contextual rather than absolute. Key
principles:

●​ Client: Entity that requests a service
●​ Server: Entity that provides that service
●​ Dynamic Roles: Components can switch between client and server roles depending

on interaction context

Directional Analysis

●​ Request Direction determines roles
●​ Call initiation defines client status
●​ Response handling defines server status
●​ Role changes occur at protection ring boundaries

Component Interaction Model
+-------------------+
| Application | Ring 3: User Mode
| (Client) | |
+-------------------+ V (System Call)
 |
+-------------------+
| OS Services | Ring 2: Services
| (Client/Server) | |
+-------------------+ V (Driver Request)
 |
+-------------------+
| HAL/Driver Level | Ring 1: Drivers
| (Client/Server) | |
+-------------------+ V (Hardware Access)
 |
+-------------------+
| Kernel | Ring 0: Kernel Mode
| (Server) |
+-------------------+

47

Protection Ring Architecture

Ring 0 (Kernel Mode)

●​ Asset Type: Software + Hardware
●​ Primary Role: Core system services provider
●​ Generic Vulnerabilities:

○​ Server-side code flaws in kernel services (#2)
○​ Client-side vulnerabilities in hardware interfaces (#3)
○​ Function scope and privilege boundaries (#1)

Ring 1 (HAL/Driver Level)

●​ Asset Type: Software
●​ Primary Role: Hardware abstraction and device control
●​ Generic Vulnerabilities:

○​ Server-side flaws in driver interfaces (#2)
○​ Client-side vulnerabilities in hardware communication (#3)
○​ Function scope in driver operations (#1)

Ring 2 (OS Services)

●​ Asset Type: Software
●​ Primary Role: System service provision
●​ Generic Vulnerabilities:

○​ Server-side flaws in service handlers (#2)
○​ Client-side vulnerabilities in service requests (#3)
○​ Function scope in service operations (#1)

Ring 3 (User Mode)

●​ Asset Type: Software
●​ Primary Role: Application execution
●​ Generic Vulnerabilities:

○​ Server-side flaws in application handlers (#2)
○​ Client-side vulnerabilities in API calls (#3)
○​ Function scope in application operations (#1)

48

Attack Surface Analysis

Ring Boundary Interactions

●​ Each boundary represents a potential attack surface
●​ Vulnerabilities can exist on either side of the boundary
●​ Attack paths can traverse multiple boundaries
●​ Direction of exploitation is critical for threat classification

Vulnerability Mapping Principles

●​ Identify the exact location of vulnerable code
●​ Determine the direction of the interaction
●​ Analyze the component's role at time of exploitation
●​ Map to appropriate threat cluster based on vulnerability context

Bidirectional Attack Paths

Downward Path Example (Ring 3 → Ring 0):

1. Client exploit of system call interface (#3)

2. Server exploit in Ring 2 service (#2)

3. Server exploit in Ring 1 driver (#2)

4. Abuse of kernel functions (#1)

Upward Path Example (Ring 0 → Ring 3):

1. Server exploit in interrupt handler (#2)

2. Client exploit in Ring 2 callback (#3)

3. Client exploit in Ring 3 handler (#3)

4. Malware execution in application (#7)

Threat Cluster Application

Applicable Clusters by Ring Boundary

Nine threat clusters apply at each boundary (excluding #9 Social Engineering):

49

Abuse of Functions (#1)

●​ Manifestation: Privilege escalation across rings
●​ Vulnerability: Function scope at boundaries

Exploiting Server (#2)

●​ Manifestation: Service vulnerabilities
●​ Vulnerability: Code flaws in ring services

Exploiting Client (#3)

●​ Manifestation: Interface vulnerabilities
●​ Vulnerability: Client interface handling

Identity Theft (#4)

●​ Manifestation: Credential abuse across rings
●​ Vulnerability: Authentication between rings

Man in the Middle (#5)

●​ Manifestation: Inter-ring communication interception
●​ Vulnerability: Communication path control

Flooding Attack (#6)

●​ Manifestation: Resource exhaustion across rings
●​ Vulnerability: Capacity limitations

Malware (#7)

●​ Manifestation: Malicious code execution
●​ Vulnerability: Code execution capabilities

Physical Attack (#8)

●​ Manifestation: Hardware-level compromises
●​ Vulnerability: Physical accessibility

Supply Chain (#10)

●​ Manifestation: Compromised ring components
●​ Vulnerability: Third-party dependencies

50

 Implementation Framework

Security Control Requirements

●​ Address bidirectional threats at boundaries
●​ Map to specific generic vulnerabilities
●​ Consider all applicable threat clusters
●​ Implement NIST function controls
●​ Monitor both downward and upward paths
●​ Validate cross-ring transitions

Ring Boundary Controls

Ring 3 → Ring 2

●​ IDENTIFY: Monitor system call patterns
●​ PROTECT: Implement call validation
●​ DETECT: Identify abnormal transitions
●​ RESPOND: Block suspicious calls
●​ RECOVER: Reset service state

Ring 2 → Ring 1

●​ IDENTIFY: Audit driver interfaces
●​ PROTECT: Validate driver requests
●​ DETECT: Monitor driver behavior
●​ RESPOND: Isolate compromised drivers
●​ RECOVER: Restore driver state

Ring 1 → Ring 0

●​ IDENTIFY: Map kernel entry points
●​ PROTECT: Enforce strict privilege checks
●​ DETECT: Monitor privilege transitions
●​ RESPOND: Block unauthorized elevation
●​ RECOVER: Reset kernel security state

Case Studies and Common Misconceptions

51

Illustrative Examples

Hypothetical Vulnerability 1 (Server)

A kernel component contains a buffer overflow vulnerability during system call processing.
A user-mode process exploits this by crafting a specific system call that overflows the
kernel's buffer on the server side code. This is categorized as "#2 Exploiting Server" because
the vulnerability exists in the server code processing a user request.

Hypothetical Vulnerability 2 (Client)

A driver handling network data receives a carefully crafted packet that triggers a buffer
overflow in the driver's processing code during a network event handling callback. Though
triggered by network data, this is a client-side issue in how it processes responses from the
network, mapping to "#3 Exploiting Client".

Real-World Case Study: Hyper-V VSP

A vulnerability exists within the Hyper-V VSP component where it acts as a client making
calls to the NT Kernel. The vulnerability involves the VSP component mismanaging a
response from the Kernel, leading to a buffer overflow on the client side. Despite the final
impact involving privilege elevation and kernel code execution, the initial vulnerability is
exploited within the client-side code, mapping to "#3 Exploiting Client".

Common Misconceptions

Privilege Escalation vs. Root Cause

●​ Don't map clusters based on the outcome
●​ Focus on initial vulnerability location
●​ Consider direction of exploitation
●​ Remember that client-side exploits can lead to privilege escalation

Component Roles

●​ Kernel is not always the server
●​ Components can switch roles depending on interaction context
●​ Role determination requires analyzing specific interaction
●​ Same component can be both client and server in different scenarios

52

Analysis Pitfalls

●​ Avoid focusing on high-level effects instead of vulnerability location
●​ Don't assume fixed roles for components
●​ Remember that impact doesn't determine classification
●​ Consider the complete context of the vulnerability

Key Analysis Requirements

●​ Deep understanding of OS architecture
●​ Knowledge of threat manifestations
●​ Ability to map vulnerabilities accurately
●​ Expertise in secure interface design
●​ Detailed analysis of call direction and component roles
●​ Understanding of vertical stack implications

Implementation Guidelines

Critical Success Factors

●​ Thorough understanding of protection rings
●​ Clear identification of component roles
●​ Precise vulnerability mapping
●​ Comprehensive control implementation
●​ Continuous monitoring and validation

Best Practices

●​ Document all boundary interactions
●​ Maintain clear role definitions
●​ Regular security assessment
●​ Update control frameworks
●​ Monitor attack patterns
●​ Validate security assumptions

53

Standardizing Strategic Cybersecurity

Here I would expect NIST to incorporate my TLCTC concept and make some
refinements. The Goal should be building a bridge from NIST to the (extended) MITRE
World (ATT&CK, CWE, CAPEC and CVE)

Refinement of the Top Level Clusters

The Top Level Cyber Threat Clusters (TLCTC) framework proposes a structured
approach to categorizing cyber threats through ten distinct clusters. This naturally raises
the question: "Why ten clusters?" This analysis explores the rationale behind this number,
its implications for practical implementation, and its role in the evolution of cyber threat
categorization.

 The selection of ten clusters serves as a deliberate challenge to the cybersecurity
community, particularly to major bodies like NIST and MITRE. It highlights the
limitations of existing frameworks like STRIDE, which has served the industry well but
struggles to address the full spectrum of modern cyber threats. The TLCTC framework
demonstrates that a more comprehensive and logically consistent approach is possible,
while remaining open to evolution as long as the fundamental axioms are not violated.

The framework's structure allows for evolution within certain clusters.

Here I provide examples:

Refinement of #2 Exploiting Server:

The Exploiting Server threat cluster targets vulnerabilities in server-side software to
manipulate server behavior or gain unauthorized access using exploit code. This refinement
provides a more detailed categorization of the attack vectors within this cluster: imo: job of
a NIST & MITRE agreement, but until then:) …

#2.1 Server communication protocol exploit

This vector targets vulnerabilities in the protocols used for communication between servers
and clients. ​
Examples:

●​ SSL/TLS vulnerabilities on the server side (e.g., Heartbleed when implemented
server-side)

54

●​ HTTP response splitting
●​ SMTP injection in mail servers
●​ DNS server vulnerabilities (e.g., cache poisoning)
●​ RPC vulnerabilities in server implementations

#2.2 Server core function exploit

This vector focuses on vulnerabilities within the main functionalities of the server software,
including internal data parsing and handling. ​
Examples:

●​ SQL injection in database servers
●​ Command injection in web servers
●​ Buffer overflows in FTP servers
●​ XML parsing vulnerabilities in application servers
●​ Authentication bypass in various server types

#2.3 Server external handler exploit

This vector covers vulnerabilities that arise when the server delegates handling to external
software or components. ​
Examples:

●​ Server-side includes (SSI) injection
●​ Vulnerabilities in server-side script engines (e.g., PHP, ASP.NET, Ruby)
●​ Exploits in server-side document processors or media handlers
●​ Vulnerabilities in server plugins or modules (e.g., Apache modules, IIS extensions)

Key Characteristics of Exploiting Server:

●​ Exposure: Direct - servers are typically exposed to incoming requests
●​ Initiation: Passive - the server is vulnerable to incoming malicious requests without

needing to initiate action
●​ Nature: Can be exploited through crafted requests sent to the server
●​ Impact: Often has broader implications due to the server's role in serving multiple

clients

This refinement maintains the generic nature of the threat cluster while providing a
comprehensive framework for categorizing server-side exploits across various types of server

55

software. It aligns with the concept's goal of being universally applicable across different IT
systems and contexts.

Refinement of #3 Exploiting Client

The Exploiting Client threat cluster targets vulnerabilities in client-side software to
manipulate client behavior or gain unauthorized access using exploit code. This refinement
provides a more detailed categorization of the attack vectors within this cluster: imo: job of
a NIST & MITRE agreement, but until then:) …

 #3.1 Client communication protocol exploit

This vector targets vulnerabilities in the protocols used for communication between clients
and servers. ​
Examples:

●​ TLS vulnerabilities (e.g., Heartbleed),
●​ HTTP request smuggling,
●​ SSH protocol vulnerabilities,
●​ LDAP injection,
●​ RPC vulnerabilities

#3.2 Client core function exploit

This vector focuses on vulnerabilities within the main functionalities of the client software,
including internal data parsing and handling. ​
Examples:

●​ SQL injection in database clients,
●​ XSS in web browsers,
●​ buffer overflows in FTP clients,
●​ XPATH injection in XML parsing clients

#3.3 Client external handler exploit

This vector covers vulnerabilities that arise when the client delegates handling to external
software or components. ​
Examples:

●​ PDF exploits targeting Adobe Acrobat when opened from a browser,

56

●​ malicious Office documents exploiting vulnerabilities in Microsoft Office when
opened from an email client,

●​ exploits targeting media player plugins when invoked by a web browser

Key Characteristics of Exploiting Server:

●​ Exposure: Indirect - client software typically interacts with potentially malicious
data or systems through requests or downloads

●​ Initiation: Active - the client must initiate some form of interaction or process that
triggers the exploit

●​ Nature: Can be exploited through malformed responses, malicious files, or
compromised resources that the client accesses or processes

●​ Scope: Affects a wide range of client software, from web browsers to automated
tools and system processes

●​ Impact: Often localized to the compromised client initially, but can lead to broader
system or network compromise

This refinement maintains the generic nature of the threat cluster while providing a
comprehensive framework for categorizing client-side exploits across various types of client
software. It aligns with the concept's goal of being universally applicable across different IT
systems and contexts.

Refinement of Physical Attack Cluster (#8)

The Physical Attack cluster can be further refined into two subcategories to provide a more
nuanced understanding of the different types of physical threats

#8.1 Direct Physical Access Attacks

This subcategory encompasses any attack that requires direct physical interaction with the
hardware or its immediate environment.

●​ Hardware Tampering: Opening devices to modify components, install keyloggers,
or extract data.

●​ Device Theft: Stealing physical devices containing sensitive data.
●​ Physical Intrusion: Gaining unauthorized access to secure areas where IT

infrastructure is located.

#8.2 Indirect Physical Access Attacks

57

This subcategory focuses on attacks that exploit physical vulnerabilities without direct
contact with the hardware.

●​ Electromagnetic Attacks (Side-Channel Attacks): Exploiting electromagnetic
emissions from devices to extract data or disrupt operations (e.g., TEMPEST
attacks).

●​ Acoustic Attacks: Using sound waves to manipulate or extract data from devices.
●​ Environmental Attacks: Disrupting operations by manipulating environmental

factors like temperature or power supply.

This refinement allows for a more precise categorization of physical threats, enabling
organizations to develop more targeted security measures and risk management strategies
for each subcategory of physical attacks.

Refinement of the Supply Chain Attack Cluster (#10)

#10.1 Update Vector (active, post-deployment)

This covers attacks on update mechanisms and distribution channels for software,
firmware, or hardware already in use. It would include compromised third-party
components delivered via updates.

#10.2 Development Vector (silent, pre-deployment)

This encompasses attacks on the development process, including compromises of source
code repositories, build systems, or testing environments. It would also cover the
incorporation of vulnerable or malicious third-party libraries or components during
development.

#10.3 Hardware Supply Chain Vector

This covers attacks that target hardware components or manufacturing processes.

Each of these subcategories represents a distinct and generic vector in the supply chain,
following the axiom of distinction.

These examples are intended to show that, taking the axioms into account, the TLCTC
concept can be expanded. The notation of an attack path can thus be designed in a more
granular way, e.g., #10.1->#7->[Data Risk Event].

58

As mentioned, the TLCTC concept starts with 10 clusters, primarily for pragmatic reasons
and until the TLCTC concept gains more widespread adoption. However, without the key
players NIST and MITRE, it will be difficult.

59

Standardizing Operational Cybersecurity

The Need for Consistent Sub-Threat Structures (or TTPs)

At the operational level of cybersecurity, there is a pressing need for a standardized
approach to categorizing and managing sub-threats, TTPs (Tactics, Techniques, and
Procedures), and attack sequences. While the Top Level Cyber Threat Clusters provide a
solid foundation at the strategic level, the operational layer requires further refinement and
consistency.

Currently, organizations like NIST, CISA, MITRE, as well as standards such as STIX and
RFC 9424, each have their own approaches to describing and categorizing threats at a
granular level. This fragmentation leads to several challenges:

●​ Inconsistent terminology across different frameworks and organizations
●​ Difficulties in mapping threats and vulnerabilities between systems
●​ Challenges in sharing threat intelligence effectively
●​ Inefficiencies in developing and implementing security controls

To address these issues, I propose that the cybersecurity community should work towards
developing consistent subthreat structures within each of the Top Level Cyber Threat
Clusters. This standardization effort should aim to:

●​ Create a unified taxonomy for sub-threats and TTPs
●​ Establish clear relationships between sub-threats and their parent clusters
●​ Define standardized formats for describing attack sequences and paths
●​ Develop consistent methodologies for threat assessment and prioritization

As examples of how this standardization could be implemented, i have developed detailed
integration proposals for two major frameworks:

●​ MITRE ATT&CK Integration Proposal: This demonstrates how MITRE's
techniques can be mapped to the Top Level Cyber Threat Clusters and enhanced
with additional metadata.

●​ STIX Integration Proposal: This shows how STIX can incorporate the cluster
concept and represent attack paths more effectively.

These proposals serve as starting points for discussion and highlight the potential benefits
of a more standardized approach. By adopting a consistent sub-threat structure across
different frameworks and standards, we can:

60

●​ Improve communication and collaboration between security teams and
organizations

●​ Enhance the accuracy and usefulness of threat intelligence sharing
●​ Facilitate the development of more effective and interoperable security tools
●​ Enable more comprehensive and consistent risk assessments

Moving forward, it is crucial for the cybersecurity community to come together and work
towards this standardization. This effort will require collaboration between standards
bodies, security vendors, researchers, and practitioners to develop a truly unified approach
to operational cybersecurity.

Buzz-Word Refinement of the Top Level Clusters

While the following examples provide some guidance, they are not always precise, as they
are not standardized definitions. I am referring to NIST & MITRE here, with the
understanding that MITRE would need to be "expanded." See my proposal for MITRE
here: [Standardizing Strategic Cyber Security].

NIST and CISA likely appreciate this as well. I am, of course, open to the idea of creating
potential sub-clusters. However, my goal was to define straightforward top-level categories.

Following examples should give you an idea of the direction. IMO: Most are "buzzwords",
which means lack of definition - > Hello MITRE and NIST! You are welcome here :-) And
AI is welcome either, because only a few will read the complete white paper ;-)

1. **Abuse of Functions** - Sub-Threats: - Abuse of standard services and features - Abuse of
information made public - Data Poisoning - Abuse of insecure service configurations - Abuse of
legitimate system tools (e.g., lolBins, PowerShell)) - ARP Spoofing -> leads to man in the
middle #5 - DNS Spoofing -> leads to man in the middle #5 - 20 BGP Hijacking -> leads to
man in the middle #5 - SSL Stripping (attacker needs to be MitM already eg via
ARPPoisoning - and SSL Stripping is an abuse of a (downgrade) function

2. **Exploiting Server** - Sub-Threats: - Buffer Overflows - SQL Injections - Cross-Site
Scripting (XSS) - XML External Entity (XXE) Attacks - Server Side Request Forgery (SSRF) -
Directory Traversal - Ping of Death

3. **Exploiting Client** - Sub-Threats: - Malvertising - Watering Hole Attacks - Clients App
Exploits (e.g. Browser, PDF Reader, Java, Flash) - Insecure Deserialization

61

4. **Identity Theft** - Sub-Threats: - Credential Stuffing (eg IDs, Passwords, Certificates,
Private Keys) - Session Hijacking - Pass-the-Ticket/Pass-the-Hash Attacks - Token Hijacking -
password spray attacks - Brute-Force Attacks - Fake Websites - Domain Squatting

5. **Man in the Middle** - Sub-Threats: (MitM has a focus on a already compromised
environment - you cannot trust any components between the endpoints A and B) - Wi-Fi
Eavesdropping (attacker needs to be MitM already eg within physical range -> #8) -
Pineapple Attacks (attacker needs to be MitM already eg within physical range -> #8) - Rogue
Hotspots (attacker needs to be MitM already eg within physical range -> #8 then eg fakes
SSID #4)

6. **Flooding Attack** - Sub-Threats: mostly known as DDOS Attacks on dif erent layers -
SYN Flood - UDP Flood - HTTP Flood - ICMP Flooding - Slowloris - NTP/DNS
Amplification Attacks - Botnet-Driven Attacks

7. **Malware** - Sub-Threats: - Ransomware - Trojans - Keyloggers - Rootkits - Spyware -
Worms - Adware - Mobile Malware - E-Banking Malware

8. **Physical Attack** Direct Physical Access Attacks: - Evil Maid Attacks - Hardware
Keyloggers - Direct Hardware Tampering - Device Theft - Physical Intrusion into Secure
Areas - USB Baiting (leaving malicious USB devices) - Replacement of Hardware
Components - Physical Damage to Infrastructure Indirect Physical Access Attacks: -
TEMPEST Attacks (Electromagnetic Emissions) - RFID Skimming - Acoustic Attacks (Sound
Wave Exploitation) - Optical Attacks (e.g., Shoulder Surfing) - Thermal Imaging Attacks -
Power Analysis Attacks - Environmental Manipulation (e.g., Temperature, Humidity) - Van
Eck Phreaking (Remote Screen Viewing)

9. **Social Engineering** (Information Manipulation) - Sub-Threats: - CEO Fraud -
Subscription Traps - Fraudulent Contests - Check Fraud - Cyberbullying - Dubious Webshop -
Requests for financial help from acquaintances - Fake Support - Financial Agents - Fake
Threat Emails from Authorities - Investment Fraud - Classified Ads Fraud - Package
Subscription Traps - Invoice Manipulation Fraud (BEC Fraud) - Romance Scam -
Defamation - Sextortion - Forbidden Pornography - Advance Fee Fraud - Web Administrators
Blackmail - Tailgating (unauthorized access) - Phishing - Vishing - Smishing - Baiting (e.g.,
with USB sticks)

62

10. **Supply Chain** - Sub-Threats: - Compromised Libraries or Dependencies - Backdoors -
Update-Server Hijacking - Compromised Container Images - Manipulated Hardware
(physical attack on Supply Chain)

Standardized Attack Sequence Notation

To further enhance the utility of Cyber Threat Radars and facilitate more precise threat
intelligence sharing, i recommend adopting a standardized notation for describing attack
sequences:

●​ Use the cluster numbers to represent each stage of an attack, e.g.,
#9>#3>#7->#7->#1->#7

●​ This notation provides a clear, concise way to describe complex attack patterns
●​ Each identified cluster within an attack should be counted and included in the

sequence
●​ This approach is particularly valuable for describing Attackers profiles (incl. ATPs

For example, an attack sequence of #9>#3>#7->#7->#1->#7 could represent:

1.​ #9 (Social Engineering) as the initial entry point
2.​ #3 (Exploiting Client) to gain a foothold
3.​ #7 (Malware) for initial payload execution
4.​ #7 (Malware) again for loading from C2 and execution
5.​ #1 (Abuse of Functions) to escalate privileges
6.​ #7 (Malware) once more for data exfiltration or data encryption

This standardized notation should be mandatory when exchanging information about
attacks, especially when describing APT profiles. It allows for:

●​ Quick understanding of attack methodologies
●​ Easy comparison between different attacks or threat actors
●​ Improved pattern recognition across multiple incidents
●​ More effective threat intelligence sharing between organizations and across borders

By adopting this approach, the cybersecurity community can achieve a new level of clarity
and consistency in threat analysis and communication, further enhancing the power of
Cyber Threat Radars in global cybersecurity efforts.

63

MFA Bombing and MFA Fatigue in TLCTC Attack Path Notation

MFA Bombing (also known as MFA Fatigue or MFA Push Spam) is an authentication
bypass technique where an attacker, having already obtained valid user credentials,
repeatedly triggers Multi-Factor Authentication (MFA) push notifications to the legitimate
user's device. By overwhelming the user with continuous authentication requests, the
attacker aims to either annoy the user into accidentally accepting a push notification or
wear down their security vigilance through alert fatigue. This technique gained prominence
in various high-profile breaches, including the 2022 Uber compromise.

Attack Path: #4 -> #1 -> #9 -> #4

1. Initial stage (#4 Identity Theft)

Attacker has already obtained userID and password

2. MFA Bombing (#1 Abuse of Functions)

■​ This is indeed Abuse of Functions because the attacker is misusing a legitimate
feature (MFA challenge requests) in a way that goes beyond its intended scope

■​ The functionality to request MFA challenges is working exactly as designed

■​ From the "Attacker's View" perspective for #1: "I abuse a functionality, not a coding
issue"

3. MFA Fatigue (#9 Social Engineering)

■​ The attacker manipulates the user psychologically to approve the authentication

■​ Exploits human gullibility/fatigue through repeated prompts

■​ This aligns with the generic vulnerability of #9: "human gullibility, ignorance, or
compromisability"

4. Final stage (#4 Identity Theft again)

■​ Successfully obtains the valid MFA token

■​ Completes the identity theft process

This is a great example of how the TLCTC framework helps us understand attack
sequences clearly. The ability to request MFA challenges repeatedly is not a code flaw

64

(#2/#3), but rather an abuse of intended functionality (#1), which is then combined with
social engineering (#9) to complete the identity theft (#4).

The Need for Multi-Layer Notation Convention

The TLCTC framework employs a dual-notation system that addresses the distinct
communication needs of strategic management and operational implementation. At the
strategic level, the simple #X → #Y format (e.g., #9→#3→#7) provides an intuitive,
human-readable notation for executives and security leaders to discuss attack paths, assess
risks, and make resource allocation decisions. This notation uses numbers #1 through #10
for the threat clusters, arrows (→) for attack progression, and plus signs (+) for parallel
execution (e.g., #1+#7), enabling quick comprehension and effective communication across
organizational levels.

Complementing this strategic notation, the operational level employs the structured
TLCTC-XX.YY format (e.g., TLCTC-08.00 for Physical Attack, with refinements like
TLCTC-08.01 for Direct Physical Access). This machine-readable format enables
automated processing, database integration, and systematic tool implementation while
maintaining the flexibility for detailed sub-categorization. The prefix ensures proper
framework attribution, the zero-padded primary cluster number (01-10) enables consistent
sorting, and the suffix (.YY) allows for future refinement without disrupting the core
structure.

This dual-layer approach bridges the critical gap between high-level strategic discussions
and detailed operational execution. For instance, a CISO can communicate to the board
about a "#9→#3→#7 attack pattern" threatening the organization, while the SOC team
implements specific controls for "TLCTC-09.00, TLCTC-03.00, and TLCTC-07.00" in
their security tools. Both notations remain fully compatible and can be used
interchangeably based on context—strategic dashboards might display #8 for Physical
Attack, while the underlying SIEM rules reference TLCTC-08.01 and TLCTC-08.02 for
precise control implementation. This flexibility ensures that the TLCTC framework serves
as an effective communication tool from the boardroom to the security operations center,
maintaining consistency while adapting to different organizational needs.

Real-World Application of Dual-Layer Notation

In practice, the dual-notation system proves invaluable across diverse security scenarios.
Consider the Emotet ransomware campaign where the incident commander briefs

65

executives using strategic notation: "The attackers used a #9→#7→#7→#4→(#1+#7)
sequence—social engineering email, initial Emotet malware, secondary Trickbot download,
credential theft, then simultaneous domain admin abuse and Ryuk ransomware
deployment." Meanwhile, the technical team documents with operational precision:
"TLCTC-09.00 (phishing), TLCTC-07.00 (Emotet dropper), TLCTC-07.00 (Trickbot
payload), TLCTC-04.00 (credential harvesting), then parallel TLCTC-01.00 (AD privilege
abuse) + TLCTC-07.00 (Ryuk encryption)." The notation clearly shows both the repeated
malware stages and the devastating parallel final attack.

The framework's dual notation also enhances threat intelligence sharing and regulatory
compliance. When analyzing APT campaigns, analysts can communicate patterns like
"#9→#3→#7→#7→#1→#7 attacks" showing how attackers repeatedly deploy different
malware stages (reconnaissance tools, then persistence mechanisms, then final payloads)
after initial compromise. For CVE analysis, such as the Hyper-V vulnerability
(CVE-2025-21333), teams can map potential sequences: "Primary #3 with possible #4→#3
or #7→#3 preceding paths" at the strategic level, while documenting TLCTC-03.00 as the
primary cluster with detailed prerequisites in operational systems. This consistency enables
both rapid strategic communication and precise technical implementation.

Security tool integration demonstrates the practical benefit when handling complex,
multi-stage attacks. A SIEM might alert on a pattern like
#9→#3→#7→#4→#4→(#1+#7) where repeated credential theft attempts (#4→#4)
indicate persistent lateral movement before the parallel execution of privilege escalation and
ransomware. The dashboard shows this strategic view for SOC managers, while correlation
rules trigger on specific TLCTC codes—detecting TLCTC-04.00 appearing multiple times
within a session, then alerting on simultaneous TLCTC-01.00 and TLCTC-07.00 events.
This dual-layer approach ensures that whether tracking repeated exploitation attempts,
parallel attack execution, or sequential campaign progression, teams maintain clear,
consistent communication from detection through response.

​

66

IT Systems, Assets, and the TLCTC Framework

The cyber threat landscape experiences constant evolution, primarily driven by changes in
IT system types, their functional domains, and underlying technologies. From traditional
enterprise systems to cloud infrastructure, from Internet of Things (IoT) devices to
quantum computing platforms, the variety and complexity of IT systems continue to
expand. However, it's crucial to understand that while the technological implementation
details may change, the fundamental vulnerabilities that cyber threats exploit remain
consistent. The Top Level Cyber Threat Clusters (TLCTC) framework maintains its
relevance and applicability precisely because it focuses on these underlying generic
vulnerabilities rather than specific technological implementations.

This framework's strength lies in its ability to categorize threats based on root causes and
generic vulnerabilities, transcending the specific characteristics of any particular IT system
type. Whether analyzing threats to a traditional database server, a cloud-native application,
or an emerging quantum computing platform, the same ten clusters provide a
comprehensive framework for threat identification and risk management. This consistency
enables organizations to maintain effective security strategies even as their technology
landscape evolves.

This approach allows organizations to:

●​ Maintain consistent risk management practices across diverse technology
implementations

●​ Apply security controls systematically, regardless of specific IT system types
●​ Focus on fundamental vulnerabilities rather than getting lost in technical

implementation details
●​ Adapt security strategies efficiently as new technologies emerge

A Strategic Perspective

The Challenge: Moving Beyond IT System Types

Organizations often attempt to categorize cyber threats based on IT system types – creating
separate threat categories for cloud systems, IoT devices, SCADA systems, and other
technology-specific implementations. This approach presents several critical problems:

●​ Fragmentation: Creates siloed threat perspectives that fail to recognize common
underlying vulnerabilities

67

●​ Redundancy: Leads to duplicate threat categories across different system types
●​ Scalability Issues: Requires constant updates as new technologies emerge
●​ Strategic Disconnect: Focuses on technical implementations rather than root causes
●​ Resource Inefficiency: Results in redundant control frameworks and security

measures

This system-type-based categorization persists despite its limitations, largely due to
historical practices and the natural tendency to organize threats around familiar technical
boundaries. However, this approach becomes increasingly unsustainable as technology
landscapes grow more complex and interconnected.

Core Principles

1. Generic Vulnerabilities vs. System Types

●​ The TLCTC framework categorizes threats based on generic vulnerabilities, not
IT system types

●​ Generic vulnerabilities persist across all IT systems, regardless of their specific
architecture or implementation

●​ Each threat cluster represents a distinct way these vulnerabilities can be exploited

2. Asset Management in Risk Strategy

●​ Assets are managed through the GOVERN function at the strategic level
●​ Different asset types carry different risk impacts when compromised
●​ Asset inventory informs risk appetite and resource allocation decisions
●​ Assets provide context for operational security implementation

Strategic vs. Operational Views

Strategic Level (GOVERN)

●​ Maintains comprehensive asset inventory and risk register
●​ Sets risk appetite based on asset criticality
●​ Allocates resources according to asset priority
●​ Focuses on generic vulnerabilities across all assets
●​ Uses TLCTC framework for threat categorization

Operational Level

●​ Implements controls based on specific asset characteristics

68

●​ Addresses technical nuances of different IT system types
●​ Tailors security measures to specific deployment contexts
●​ Maps generic vulnerabilities to specific technical weaknesses
●​ Maintains detailed threat intelligence for each asset type

69

Example: Cloud Infrastructure

Strategic View

●​ Applies all 10 TLCTC threat clusters
●​ Focuses on generic vulnerabilities:

○​ Software functionality and scope (#1)
○​ Server-side code flaws (#2)
○​ Client-side vulnerabilities (#3)
○​ Identity management weaknesses (#4)
○​ etc.

Operational View

●​ Implements cloud-specific controls
●​ Addresses unique characteristics:

○​ Multi-tenancy considerations
○​ API security requirements
○​ Containerization security
○​ Cloud service provider integration

The AI System Example

As an IT System

●​ Subject to all generic vulnerabilities
●​ Requires standard TLCTC threat analysis
●​ Needs specific operational controls

As a Tool

●​ Can enhance security capabilities
●​ May introduce new operational considerations
●​ Requires appropriate control framework

As an Actor

●​ Potential threat actor
●​ Uses existing threat clusters
●​ Requires specific detection strategies

70

Implementation Framework

Asset Inventory (GOVERN)

●​ Catalog all IT systems
●​ Group by type and criticality
●​ Assess business impact
●​ Define risk appetite

Threat Analysis (Strategic)

●​ Apply TLCTC framework
●​ Focus on generic vulnerabilities
●​ Map threats to asset groups
●​ Define control objectives

Control Implementation (Operational)

●​ Deploy system-specific controls
●​ Address unique characteristics
●​ Implement monitoring
●​ Maintain threat intelligence

Conclusion

The TLCTC framework provides a strategic foundation for threat categorization while
acknowledging the operational importance of IT system types. This dual-level approach
ensures:

●​ Consistent threat categorization across all assets
●​ Clear connection between strategic and operational security
●​ Effective risk management and resource allocation
●​ Adaptability to new technologies and systems

By maintaining this clear separation between strategic threat categories and operational
asset management, organizations can build more effective and sustainable security
programs.

71

A. Leveraging NIST CSF functions

The NIST CSF functions can be used to organize controls and their objectives (e.g.,
"Protect from Malware Execution", "Detect Malware Execution") within each of the Top
Level Cyber Threat Clusters. This combination would provide a comprehensive framework
for both threat identification and risk evaluation.

The "Identify" function, enhanced with the Cyber Threat Clusters, would enable more
effective management of both high-level threats and operational sub-threats, ensuring a
complete and coherent control framework.

Cyber Threat Cluster Control Framework

Overview

This framework integrates the 10 Top Level Cyber Threat Clusters with the NIST
Cybersecurity Functions to provide a comprehensive approach to cybersecurity risk
management.

Structure

Use this Scheme for each Threat Cluster:

NIST Function Control Objective Local Controls Umbrella Controls

Identify Identify weaknesses
enabling [Threat] Event

[Specific measures] [Overarching
systems/processes]

Protect Protect from [Threat]
Event

[Specific measures] [Overarching
systems/processes]

Detect Detect [Threat] Event [Specific measures] [Overarching
systems/processes]

Respond Respond to [Threat]
Event

[Specific measures] [Overarching
systems/processes]

Recover Recover from [Threat]
Event

[Specific measures] [Overarching
systems/processes]

Example: #2 Exploit Server (Controls are not complete - its a POC here)

NIST Function Control Objective Local Controls Umbrella Controls

Identify Try to identify failures Fuzzy Testing, Network Threat Intell this topic,

72

NIST Function Control Objective Local Controls Umbrella Controls

in the code of your
Server Software

based Vulscan CVE Subscriptions, Bug
Bounty Programm

Protect Protect Server from
being exploited

Patchmanagement, Secure
Coding

WAF

Detect Detect Exploited Server Local Event Logging SIEM

Respond Respond to exploited
server

Emergency Patch, CSIRT, Exploit Server
Response Plan (Make
WAF Rules)

Recover Recover Server Exploit
Event

Maintain your Repo,
Restore

IT-SCM

Example: #4 Identity Theft (Controls are not complete - its a POC here)

NIST Function Control Objective Local Controls Umbrella Controls

Identify Identify weaknesses in
identity management
(tech and org);​
Identify weaknesses in
credential management
(tech and org)

Password policy audits,
Penetration testing

Comprehensive Identity
and Access Management
(IAM) assessment
framework , Bug Bounty
Program

Protect Protect Identity
Protect Credentials

Multi-Factor
Authentication (MFA),
Secure credential
distribution

Enterprise-wide Identity
Governance and
Administration (IGA)
system

Detect Detect Identity Theft Anomaly detection rules,
User behavior monitoring

Security Information
and Event Management
(SIEM) system

Respond Respond to Identity
Theft

Account lockout
procedures, Incident
response plan activation

Integrated Incident
Response Platform

Recover Recover Identity Identity restoration,
Credential reset procedures

Enterprise-wide Business
Continuity
Management System

While NIST functions provide an excellent structure for organizing controls and their
objectives within each Cyber Threat Cluster, ISO standards can play a complementary role
in this framework. Organizations can leverage ISO's comprehensive control sets (such as

73

those in ISO 27002) and risk management methodologies (ISO 27005) to enhance control
selection and implementation within the NIST function structure, thereby creating a more
robust and internationally aligned approach to addressing each threat cluster.

Application

This framework can be applied to all 10 Top Level Cyber Threat Clusters:

#1 Abuse of functions ​
#2 Exploiting Server ​
#3 Exploiting Client ​
#4 Identity Theft ​
#5 Man in the middle ​
#6 Flooding Attack ​
#7 Malware ​
#8 Physical Attack ​
#9 Social Engineering ​
#10 Supply Chain (Attack)

For each cluster, specific Control Objectives, Local Controls, and Umbrella Controls
should be defined according to the unique characteristics and risks associated with that
threat type.

Important Consideration for Umbrella Controls:

Umbrella Controls provide protection only for specific 'Groups of IT-Systems' within their
scope. For example, a firewall or network zone can protect 'inner IT-Systems' but cannot
effectively protect exposed IT-Systems. This limitation requires security architects to:

●​ Identify primary entry points and potential 'Patient Zero' systems that could be
initially compromised

●​ Recognize that after a 'Patient Zero' compromise, attacks typically follow the 'lateral
movement' paradigm

●​ Design defense-in-depth strategies that account for both exposed and internal
systems

●​ Implement appropriate Local Controls for systems that cannot be fully protected by
Umbrella Controls

74

This understanding is crucial for effective control implementation and supports the
framework's emphasis on attack sequences and paths.

Where are the GOV controls?

The GOVERN (GV) function in NIST CSF 2.0 operates at a strategic level, focusing on
establishing the overall cybersecurity risk management framework rather than addressing
specific threats directly. Unlike functions such as PROTECT or DETECT, which have
controls directly linked to mitigating or identifying particular cyber threats, GOVERN
controls are "assurance controls" that ensure the organization has a comprehensive
approach to cybersecurity. These controls create the structure and context within which
other functions operate, including setting risk appetite, defining roles and responsibilities,
and establishing policies. While the threat categorization, such as the Top Level Cyber
Threat Clusters, is indeed a crucial element in the risk register that GOVERN oversees, the
GV controls themselves do not directly counter specific threats. Instead, they provide the
strategic foundation that enables the organization to effectively manage and respond to the
entire spectrum of cyber risks.

75

B. SSDLC Integration

Introduction

The Secure Software Development Life Cycle (SSDLC) provides a structured approach to
embedding security throughout the software development process. By integrating the 10
Top Level Cyber Threat Clusters (TLCTC) framework, organizations can establish a
consistent, threat-informed methodology that bridges strategic security planning with
tactical implementation. Achieving this requires careful consideration of both high-level
architectural decisions (programming) and detailed, secure implementation (coding)
throughout the lifecycle, guided by the TLCTC framework. This chapter outlines how the
TLCTC framework integrates into each phase of the SSDLC, highlighting the
differentiated roles of programmers and coders in building secure software.

Fundamental Principles

The integration relies on the core principles of the TLCTC framework:

●​ Universal Applicability: The TLCTC framework maintains its core strength in the
SSDLC through:

○​ Consistent threat-vulnerability mapping across all development phases.
○​ Clear separation between threats (causes) and their outcomes (effects).
○​ Logical sequence representation for complex attack paths.
○​ Standardized categorization that applies both horizontally (across system

types) and vertically (through protection rings).
●​ Generic Vulnerabilities Focus:** Each phase of the SSDLC must proactively address

the generic vulnerabilities identified in the TLCTC framework:
○​ Software scope and functionality vulnerabilities (#1 Abuse of Functions)
○​ Server-side code flaws (#2 Exploiting Server)
○​ Client-side processing vulnerabilities (#3 Exploiting Client)
○​ Identity and access management design weaknesses (#4 Identity Theft)
○​ Communication path control issues (#5 Man in the Middle)
○​ Capacity limitations (#6 Flooding Attack)
○​ Code execution capabilities (#7 Malware)
○​ Physical accessibility concerns (#8 Physical Attack)

76

○​ Human factor vulnerabilities (#9 Social Engineering) - *Primarily addressed
through awareness, process, and UI/UX design choices influenced by
programmers.*

○​ Third-party dependency risks (#10 Supply Chain Attack)

Differentiating Roles: Coders vs. Programmers in Secure Development

While often used interchangeably, distinguishing between "coders" and "programmers"
clarifies responsibilities within a secure SSDLC context:

●​ The Programmer's Role:
○​ Focuses on the "architecture" and "strategy."
○​ Designing overall software architecture and component interactions.
○​ Making strategic decisions about frameworks, libraries, platforms, and

protocols.
○​ Establishing secure coding standards, patterns, and security requirements.
○​ Considering system-wide security implications and addressing threat clusters

like #1, #4, #5, #10 at an architectural level.
●​ The Coder's Role:

○​ Focuses on the "implementation" and "craftsmanship."
○​ Writing functional, efficient code that implements specific requirements

according to established patterns.
○​ Working within defined boundaries of components or modules.
○​ Implementing specific security controls at the code level, primarily

addressing clusters #2, #3, and the implementation details of #4, #5, #7 based
on programmer-defined standards.

○​ Following secure coding practices diligently.

This distinction is vital because different roles hold primary responsibility for mitigating
different facets of the TLCTC threat clusters, requiring collaboration throughout the
SSDLC.

Phase-Specific Integration

The TLCTC framework informs activities in each SSDLC phase, guiding both
programmers and coders:

Requirements Phase - Threat Cluster Analysis:

77

●​ Programmer Responsibilities:

●​ Identify applicable TLCTC clusters (#1-#10) based on proposed features,
data handling, user interactions, and system architecture.

●​ Analyze potential attack sequences involving multiple clusters.

●​ Define high-level security requirements explicitly tied to mitigating specific
TLCTC clusters (e.g., "System must implement controls to prevent #4
Identity Theft through robust authentication and session management").

●​ Address potential #1 (Abuse of Functions) by carefully defining functional
scope and boundaries.

●​ Coder Responsibilities:

●​ Understand the security requirements impacting the components they will
build.

●​ Provide feedback on the feasibility and potential implementation challenges
of security requirements.

Design Phase - Architecture Considerations:

●​ Programmer Responsibilities:

●​ Design the overall security architecture, mapping trust boundaries and data
flows with TLCTC clusters in mind.

●​ Make critical architectural choices impacting specific clusters: e.g., selecting
authentication frameworks (#4), defining secure communication protocols
like TLS/MTLS (#5), choosing dependency vetting strategies (#10),
establishing input validation strategies (#2, #3), and designing resource
management (#6).

●​ Define secure design patterns and select appropriate security
libraries/frameworks to address identified clusters.

●​ Design defense-in-depth strategies considering potential attack paths.

●​ Coder Responsibilities:

78

●​ Review proposed designs for implementation feasibility and security
concerns at a component level.

●​ Understand the security patterns and library usages required by the design.

Implementation Phase - Secure Coding & Programming Practices:

●​ Programmer Responsibilities:

●​ Provide and enforce secure coding standards tailored to the languages and
frameworks used.

●​ Supply approved security libraries, configurations, and reference
implementations for patterns defined in the design phase (e.g., standard
authentication flow, secure API gateway usage).

●​ Ensure clarity on handling clusters requiring architectural enforcement (#1,
#4 design, #5 design, #10 policy).

●​ Coder Responsibilities:

●​ Primary focus. Apply secure coding practices diligently, targeting relevant
clusters:

●​ Implement proper input validation, output encoding, and error
handling (#2, #3).

●​ Prevent common code-level vulnerabilities like SQL injection, XSS,
buffer overflows (#2, #3).

●​ Implement authentication, authorization, and session management
logic securely according to design (#4).

●​ Utilize secure communication protocols and perform certificate
validation correctly (#5).

●​ Implement controls against malicious code execution (e.g., safe file
uploads, avoiding eval) (#7).

●​ Adhere to dependency usage guidelines (#10).

●​ Example (OAuth Implementation for #4 Identity Theft):

79

●​ Programmer Decision: Use OAuth 2.0 with PKCE flow via a specific
Identity Provider. Define token lifetime and scope policies. Specify
required libraries.

●​ Coder Implementation: Implement the OAuth flow using the
specified library, securely store client secrets (if applicable), validate
received tokens (signature, issuer, audience, expiry, nonce), handle
state parameter correctly, protect against open redirect vulnerabilities,
and securely manage refresh tokens.

Testing Phase - Threat-Based Testing:

●​ Programmer Responsibilities:

●​ Define the security testing strategy, including threat modeling validation,
selection of tools (SAST, DAST, IAST, SCA), and scope of penetration
testing, all mapped to TLCTC clusters and potential attack sequences.

●​ Coder Responsibilities:

●​ Write unit and integration tests that verify the correct implementation of
security controls relevant to their code (#2, #3, #4 implementation, etc.).

●​ Participate actively in secure code reviews, focusing on adherence to
standards and potential cluster-related vulnerabilities.

●​ Remediate findings from SAST/DAST scans and manual tests.

Deployment Phase - Secure Deployment:

●​ Programmer Responsibilities:

●​ Design secure deployment architecture (e.g., network segmentation, firewall
rules relevant to #5, #6).

●​ Define security requirements for the CI/CD pipeline (relevant to #10, #7).

●​ Establish secure configuration management strategy (preventing #1 due to
misconfiguration).

●​ Coder Responsibilities:

●​ Implement infrastructure-as-code and deployment scripts securely.

80

●​ Manage application secrets and configurations securely during deployment
(#4).

●​ Ensure build artifacts are tamper-proof (#10, #7).

Maintenance Phase - Continuous Security:

●​ Programmer Responsibilities:

●​ Establish and oversee vulnerability management processes (especially for
#10).

●​ Define threat monitoring strategies aligned with TLCTC clusters.

●​ Develop and refine incident response plans tailored to different threat cluster
scenarios.

●​ Coder Responsibilities:

●​ Apply security patches and updates promptly and securely (#2, #3, #10).

●​ Securely update configurations as needed (#1).

●​ Participate in incident analysis and post-mortem reviews, providing
implementation context.

Integration with NIST CSF Functions

Mapping NIST CSF Functions to SSDLC Phases remains relevant. The Coder and
Programmer roles contribute activities across all five functions (Identify, Protect, Detect,
Respond, Recover) throughout the SSDLC, ensuring comprehensive coverage. For
instance, programmers contribute heavily to Identify and Protect during Design, while
coders focus intensely on Protect during Implementation, and both contribute to Detect
and Respond during Testing and Maintenance.

81

C. Secure Coding Practices

Introduction

Secure coding is far more than a final checkpoint before release; it's an ongoing discipline

woven into each phase of the Secure Software Development Life Cycle (SSDLC), as

detailed in Chapter B. By linking coding and architectural decisions to the 10 Top Level

Cyber Threat Clusters (TLCTC), development teams gain clarity on specific risks and the

precise measures needed for mitigation. This "threat-to-practice" mapping transforms

abstract security policies into concrete, actionable measures at both the code (Coder) and

architectural (Programmer) levels.

This chapter details specific secure coding and programming practices pertinent to the
TLCTC clusters most directly influenced during software development. It highlights the
collaborative nature of security, where programmers establish the secure foundation and
coders build upon it with secure implementation details.

Mapping TLCTC Clusters to Secure Development Practices

The following sections outline key practices for Programmers and Coders, organized by the

relevant TLCTC clusters.

#1 Abuse of Functions

●​ Threat Focus: Attackers misusing legitimate software functions, features, or

configurations beyond their intended scope or permissions, often exploiting design

weaknesses or misconfigurations.

●​ Programmer-Level Practices (Architectural/Design):

○​ Define Clear Functional Scope: Strictly define and document the intended

purpose and boundaries of each function, API, and component.

○​ Apply Principle of Least Privilege: Design components and roles with the

minimum necessary permissions. Avoid overly permissive defaults.

82

○​ Establish Secure Configuration Defaults: Ensure default configurations are

secure and require explicit actions to enable potentially risky features.

○​ Design Robust Access Control: Architect clear authorization checks based

on roles or attributes before allowing access to functions or data.

○​ API Boundary Definition: Clearly define and enforce contracts for internal

and external APIs, including expected inputs, outputs, and rate limits.

●​ Coder-Level Practices (Implementation):

○​ Implement Within Boundaries: Ensure code respects the defined functional

scope and doesn't introduce unintended capabilities.

○​ Enforce Access Controls: Correctly implement the authorization checks

defined in the design before executing sensitive operations.

○​ Use Approved Interfaces: Consistently use designated internal and external

APIs according to their defined contracts.

○​ Secure Configuration Handling: Implement code that reads and applies

configurations securely, avoiding hardcoded bypasses.

#2 Exploiting Server & #3 Exploiting Client

●​ Threat Focus: Attackers targeting flaws in the implementation (source code) of

server-side or client-side software, leading to unintended behavior like arbitrary code

execution, data leakage, or denial of service.

●​ Programmer-Level Practices (Architectural/Design):

○​ Establish Secure Coding Standards: Define and enforce language-specific

secure coding guidelines covering common vulnerabilities (e.g., OWASP Top

10, CERT Secure Coding).

○​ Minimize Attack Surface: Design architecture to expose minimal

functionality and validate all inputs at trust boundaries.

○​ Select Secure Libraries/Frameworks: Choose well-vetted libraries and

frameworks with strong security track records and features (e.g., built-in

input validation, output encoding).

83

○​ Define Security Patterns: Create reusable patterns for common security

controls like input validation, output encoding, error handling, and memory

management.

●​ Coder-Level Practices (Implementation -

○​ Input Validation & Sanitization: Rigorously validate and sanitize all inputs

(user data, API calls, file uploads, configuration values) against a strict

allow-list before processing. Prevent injection attacks (SQLi, NoSQLi,

Command Injection, LDAPi).

○​ Output Encoding: Properly encode all data before rendering it in user

interfaces (HTML, JS, CSS) or including it in structured formats (JSON,

XML) to prevent Cross-Site Scripting (XSS).

○​ Secure API/Function Usage: Use functions and libraries securely,

understanding potential pitfalls (e.g., buffer overflows in C/C++,

deserialization risks).

○​ Memory Management: (Where applicable, e.g., C/C++) Implement correct

memory allocation, usage, and deallocation practices to prevent buffer

overflows, use-after-free, etc.

○​ Secure Error Handling: Implement error handling that fails securely, logs

sufficient detail for diagnostics, but does not expose sensitive information to

users or attackers.

○​ Language-Specific Practices: Apply security best practices specific to the

programming language and runtime environment.

#4 Identity Theft

●​ Threat Focus: Attackers illegitimately acquiring, stealing, or misusing

authentication credentials (passwords, tokens, keys, session identifiers) to

impersonate legitimate identities.

●​ Programmer-Level Practices (Architectural/Design):

84

○​ Design Authentication Architecture: Choose appropriate authentication

protocols (e.g., OAuth 2.0, OIDC, SAML) and flows based on risk.

○​ Select Identity Frameworks/Providers: Evaluate and select secure identity

providers (IdPs), libraries, and SDKs.

○​ Define Credential & Session Policies: Establish requirements for password

complexity, MFA, credential rotation, session timeouts, and secure storage.

○​ Establish Secure Patterns: Define standard implementation patterns for

login, registration, password reset, token handling, and session management.

●​ Coder-Level Practices (Implementation):

○​ Implement Flows Correctly: Accurately implement authentication and

authorization flows according to the chosen standard and design patterns

(e.g., correctly handling redirects, state parameters, PKCE in OAuth).

○​ Secure Credential Handling: Use industry-standard algorithms (e.g.,

Argon2, bcrypt) with unique salts for password hashing. Never store

passwords in plaintext or reversible formats.

○​ Secure Token/Session Management: Implement secure handling of session

tokens/cookies (e.g., use HttpOnly, Secure, SameSite flags; validate tokens

correctly). Store tokens securely (e.g., avoid local storage for sensitive tokens).

○​ Credential Protection: Avoid hardcoding credentials or API keys. Implement

secure mechanisms (using secrets management tools/services) to inject secrets

at runtime. Protect against credential stuffing and brute-force attacks (e.g.,

account lockouts, captchas).

#5 Man in the Middle (MitM)

●​ Threat Focus: Attackers intercepting, eavesdropping on, modifying, or relaying

communications between two parties by exploiting weaknesses in the

communication channel or its endpoints.

●​ Programmer-Level Practices (Architectural/Design):

85

○​ Mandate Secure Transport: Require HTTPS (TLS) for all web

communication. Design for secure protocols (e.g., SSH, SFTP, VPNs) for

other communications.

○​ Define TLS/MTLS Strategy: Specify minimum TLS versions, required

cipher suites, and whether Mutual TLS (MTLS) is needed for

service-to-service communication.

○​ Establish Certificate Management Strategy: Define processes for obtaining,

deploying, rotating, and revoking certificates. Consider options like

certificate pinning where appropriate, understanding the maintenance

overhead.

○​ Define Secure Communication Patterns: Ensure designs don't inadvertently

route sensitive data over insecure channels.

●​ Coder-Level Practices (Implementation):

○​ Implement Secure Protocols Correctly: Utilize standard, secure libraries for

TLS/SSH etc. Configure them according to the defined strategy.

○​ Proper Certificate Validation: Ensure code always validates server certificates

(checking hostname, expiry, trust chain) before establishing connections.

Implement custom validation logic carefully if required (e.g., for pinning).

○​ Secure Data Transmission: Ensure sensitive data (credentials, tokens, PII) is

only ever transmitted over encrypted channels.

○​ Avoid Insecure Shortcuts: Resist disabling certificate validation or using

insecure protocols during development or testing, except in highly

controlled, isolated environments.

#7 Malware

●​ Threat Focus: Attackers abusing a software environment's capability to execute

foreign or untrusted executable content (scripts, binaries, macros, dual-use tools).

●​ Programmer-Level Practices (Architectural/Design):

86

○​ Design Execution Control Policies: Define what code/scripts are allowed to

run and from where (e.g., trusted sources only).

○​ Require Code Signing: Establish policies for signing internally developed

code and verifying signatures of external code/updates.

○​ Plan Safe Execution Environments: Design for sandboxing or

containerization where untrusted or risky code/processes must be handled.

○​ Define Safe File Handling Policies: Specify how file uploads/downloads

should be handled, scanned, and stored.

●​ Coder-Level Practices (Implementation):

○​ Implement Safe Execution: Avoid features that allow arbitrary code
execution based on external input (e.g., eval() in JavaScript, unsafe
deserialization).

○​ Secure File Handling: Implement file upload/download logic securely,
validating file types, names, and sizes. Store uploaded files outside the web
root and with non-executable permissions. Scan files using appropriate tools.

○​ Validate External Inputs: Treat all data loaded from external sources (files,

network) as potentially untrusted and validate/sanitize accordingly before

use, especially if it influences execution flow.

○​ Dependency Integrity: Ensure build processes verify the integrity of fetched

dependencies (checksums/signatures).

#10 Supply Chain Attack

●​ Threat Focus: Attackers compromising systems by targeting vulnerabilities within

third-party software components, hardware, services, or distribution/update

mechanisms integrated into an organization's environment or products.

●​ Programmer-Level Practices (Architectural/Design):

○​ Establish Dependency Vetting: Define a process for evaluating and

approving third-party libraries, frameworks, and components based on

security posture, maintenance, and known vulnerabilities.

87

○​ Define Dependency Management Policy: Specify rules for updating

dependencies, removing unused ones, and using tools like Software

Composition Analysis (SCA) and Software Bill of Materials (SBOM).

○​ Secure Build/Deployment Pipeline: Design CI/CD pipelines with security

checks (SCA scans, static analysis, integrity verification) integrated.

○​ Establish Vulnerability Management Process: Define how to respond when

vulnerabilities are found in dependencies.

●​ Coder-Level Practices (Implementation):

○​ Adhere to Dependency Guidelines: Use only approved libraries and versions.

Avoid adding unvetted dependencies.

○​ Utilize Tooling: Integrate SCA tools into local development environments

and CI pipelines. Regularly review SBOMs.

○​ Implement Safely: When using external libraries, treat their inputs/outputs

carefully. Implement safeguards (e.g., validating data returned from a library)

as if they could be compromised.

○​ Report Vulnerabilities: Promptly report potentially vulnerable dependencies

identified during development or via SCA tools.

○​ Minimize Dependency Footprint: Use only necessary libraries and features

to reduce the attack surface.

Application Across the SSDLC

These practices are not confined to the implementation phase. As detailed in Chapter B,

programmer-level decisions informed by TLCTC occur during Requirements and Design.

Coder-level implementation happens during the Implementation phase, guided by those

decisions. Both roles contribute to verification during Testing and ongoing vigilance during

Maintenance. Secure coding is a continuous effort, contextualized by the SSDLC process

and focused by the TLCTC framework.

88

Conclusion

By explicitly mapping secure coding and programming practices to the Top Level Cyber

Threat Clusters, organizations move beyond generic guidelines. This structured approach

empowers programmers to make informed architectural decisions and enables coders to

apply targeted, effective security controls during implementation. Understanding the

distinct responsibilities within the context of TLCTC ensures comprehensive coverage,

reduces ambiguity, and fosters a collaborative environment where security is integrated

throughout the software development lifecycle, resulting in more resilient and trustworthy

software.

Bridging the Communication Gap: From SAST Reports to Strategic Risk
Communication

Static Application Security Testing (SAST) tools like SonarQube have become essential
components of modern secure development practices. They scan source code, identify
vulnerabilities, and generate reports filled with Common Weakness Enumeration (CWE)
identifiers. While these technical findings are invaluable for developers, they often create a
communication challenge when it comes to conveying security risks to strategic leadership.

This is where the reverse experience of the Top Level Cyber Threat Clusters (TLCTC)
framework becomes particularly powerful. Instead of starting with strategic threat analysis
and drilling down to technical implementation, we can work backwards – taking technical
findings and mapping them to strategic threat categories that CISOs and executives can
understand and act upon.

The Communication Challenge

Consider a typical scenario: Your SAST tool identifies CWE-89 (SQL Injection) in your
codebase. The development team understands the technical risk, but when presenting to
the CISO, the conversation often gets lost in technical details. The CISO needs to
understand:

●​ What business risk does this represent?

●​ How does this fit into our broader threat landscape?

89

●​ What strategic controls should we prioritize?

●​ How do we communicate this risk to the board?

The TLCTC Mapping Solution

Key Insight: Every CWE finding can be mapped to one of the 10 Top Level Cyber Threat
Clusters, instantly translating technical vulnerabilities into strategic risk language.

The complete CWE to TLCTC mapping table is available at www.tlctc.net, providing
developers and security teams with a comprehensive translation layer between technical
findings and strategic communication.

Practical Mapping Examples

SAST Finding: CWE-89 (SQL Injection) detected in login function

TLCTC Mapping: #2 Exploiting Server

Strategic Communication: "We have identified server-side code implementation flaws
that could allow attackers to manipulate our database through malicious input, potentially
leading to data breach or system compromise."

SAST Finding: CWE-79 (Cross-Site Scripting) found in user profile page

TLCTC Mapping: #2 Exploiting Server (if stored XSS) or #3 Exploiting Client (if
DOM-based)

Strategic Communication: "We have code-level vulnerabilities that could enable attackers
to execute malicious scripts in user browsers, potentially compromising user sessions and
data."

SAST Finding: CWE-352 (Cross-Site Request Forgery) in payment processing

TLCTC Mapping: #1 Abuse of Functions

Strategic Communication: "Our application functions lack sufficient protection against
abuse, allowing attackers to trick users into performing unauthorized actions like
fraudulent transactions."

90

https://www.tlctc.net/

Common CWE to TLCTC Mappings

CWE
ID

CWE Name TLCTC Cluster Strategic Context

CWE-
89

SQL Injection #2 Exploiting
Server

Server-side code implementation
flaw

CWE-
79

Cross-Site
Scripting

#2 or #3 Code flaw enabling script
injection

CWE-
352

Cross-Site
Request Forgery

#1 Abuse of
Functions

Function design lacks abuse
protection

CWE-
502

Insecure
Deserialization

#2 or #3 Data processing code
implementation flaw

CWE-
307

Improper
Authentication

#4 Identity Theft Credential management process
weakness

CWE-
506

Embedded
Malicious Code

#7 Malware Code execution environment
vulnerability

Implementation Process

Step 1: Automated Mapping Integration

Integrate the CWE-to-TLCTC mapping table into your SAST tool reporting pipeline.
This can be achieved through custom scripts or plugins that automatically append TLCTC
cluster information to CWE findings.

Step 2: Strategic Risk Aggregation

Group findings by TLCTC cluster to provide executives with a strategic view of your threat
landscape. Instead of presenting 47 individual CWE findings, present them as risks across
relevant threat clusters.

Step 3: Control Alignment

91

Map each TLCTC cluster to appropriate NIST CSF controls (Identify, Protect, Detect,
Respond, Recover), enabling clear communication about required security investments and
control implementations.

Step 4: Executive Reporting

Create executive dashboards that show threat cluster exposure rather than technical
vulnerability counts. This enables strategic decision-making about resource allocation and
risk tolerance.

Sample Executive Communication

Strategic Risk Summary

#2 Exploiting Server: We have identified 12 server-side code implementation flaws that
could enable attackers to manipulate our application behavior. These require immediate
development team attention and align with our secure coding training initiative.

#4 Identity Theft: Our authentication mechanisms show 3 weaknesses that could allow
credential compromise. This connects to our planned MFA rollout and identity governance
program.

#1 Abuse of Functions: 5 findings indicate our application functions lack sufficient abuse
protection. This supports the business case for implementing additional input validation
and business logic controls.

Benefits of the Reverse Mapping Approach

●​ Strategic Alignment: Technical findings are immediately contextualized within the
organization's broader risk management framework

●​ Executive Communication: CISOs can present technical risks in business terms that
executives understand and can act upon

●​ Resource Prioritization: Security investments can be prioritized based on threat
cluster exposure rather than individual vulnerability counts

●​ Control Integration: Technical remediation efforts align with strategic security
control frameworks like NIST CSF

●​ Risk Aggregation: Multiple technical findings roll up into coherent strategic risk
categories

92

●​ Board Reporting: Technical security posture can be communicated effectively to
board members and stakeholders

Implementation Example

Example mapping script integration def map_cwe_to_tlctc(cwe_id):

mapping_table = { 'CWE-89': {'cluster': '#2', 'name': 'Exploiting Server'},

'CWE-79': {'cluster': '#2/#3', 'name': 'Exploiting Server/Client'},

'CWE-352': {'cluster': '#1', 'name': 'Abuse of Functions'}, 'CWE-502':

{'cluster': '#2/#3', 'name': 'Exploiting Server/Client'}, 'CWE-307':

{'cluster': '#4', 'name': 'Identity Theft'} } return

mapping_table.get(cwe_id, {'cluster': 'Unknown', 'name': 'Requires

Analysis'}) # Generate strategic risk summary def

generate_strategic_summary(sast_findings): cluster_counts = {} for finding

in sast_findings: tlctc_info = map_cwe_to_tlctc(finding['cwe_id']) cluster

= tlctc_info['cluster'] cluster_counts[cluster] =

cluster_counts.get(cluster, 0) + 1 return cluster_counts

Moving Forward

The reverse mapping approach represents a fundamental shift in how we communicate
about application security. By starting with technical findings and translating them into
strategic risk language, we bridge the communication gap between development teams and
executive leadership.

This approach transforms SAST reports from technical documents into strategic risk
intelligence, enabling organizations to:

●​ Make informed decisions about security investments

●​ Prioritize remediation efforts based on business impact

●​ Communicate effectively across all organizational levels

●​ Align technical security activities with business objectives

Action Item: Visit www.tlctc.net to access the complete CWE-to-TLCTC mapping table
and begin implementing this reverse mapping approach in your organization today.

93

https://www.tlctc.net/

By leveraging the TLCTC framework's reverse mapping capabilities, organizations can
transform their approach to security communication, ensuring that technical findings
translate into strategic action and organizational resilience.

94

Reflecting on STRIDE

Earlier threat modeling methodologies like STRIDE (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, Elevation of Privilege) provided useful lenses for
understanding certain types of attacks. STRIDE helped break down the enormous scope of
security concerns into manageable buckets, guiding developers away from a purely ad hoc
approach.

However, as the threat landscape has grown more complex and specialized, STRIDE’s
categories can feel too broad or outdated compared to the nuanced approach of the
TLCTC. While STRIDE remains a valuable historical and foundational concept, the
TLCTC framework offers a more direct mapping from modern, often specialized attacks
(like supply chain breaches or client-side exploits) to concrete coding practices. This
granularity and relevance to current threats make TLCTC a powerful evolution of earlier
methodologies.

Conclusion

By adopting the TLCTC framework and linking it to secure coding practices, organizations
build robust security into their development lifecycle. Every coding choice correlates with a
recognized threat cluster, and every external warning—whether from CERT, CISA, or
CVE—is easily mapped to familiar controls. The inclusion of concrete examples ensures
new readers can calibrate their understanding quickly. While earlier models like STRIDE
paved the way for structured threat analysis, TLCTC meets today’s challenges head-on with
greater specificity, adaptability, and direct applicability.

In doing so, software security matures from a reactive, post-release scramble into a
proactive, well-informed endeavor that thrives on shared language, continuous
improvement, and close alignment with the evolving threat environment.

95

D. Threat Intelligence - Real World Examples

NSO Group Pegasus spyware Attack Paths

Based on the Amnesty
International report1,
the NSO Group's
Pegasus spyware attack
paths can be categorized
into several main
vectors. These attack
paths demonstrate the
sophisticated and
evolving nature of the
Pegasus spyware,
utilizing various threat
clusters in sequence to
compromise target
devices:

Example Description

1 https://www.barnes.ch/Forensic_Methodology_Report_NSO_Groups_Pegasus_Amnesty_International.pdf

96

Campaign 1: The most common and effective path. Begins with a malicious SMS or
iMessage, leading the target to click a link that infects the device with
malware. Seen in attacks against Maati Monjib (2019) and many others.

Campaign 2: Uses network injection attack (MitM) to redirect the user to a
compromised website, which then delivers malware. Used against Omar
Radi (2019), redirecting to a fake Yahoo page and then to a
malware-delivering domain.

Campaign 3: A successful exploit (e.g., zero-day in Apple Photos app) leaves the device
vulnerable to a second, more direct malware infection. Seen with French
journalist (CODE FRJRN1) in May 2020.

Campaign 4: This path, seen with the French journalist (CODE FRJRN1) in 2020,
starts with network injection (#1 and #5), which then leads to the delivery
of a malicious webpage. The user interacting with the webpage triggers
the Client Exploit (#3), resulting in the installation of malware (#7).

Campaign 5: Simplest path, used in Apple Music exploits starting in 2020. Leverages a
vulnerability in the Apple Music app to directly deliver malware.

Campaign 6: Demonstrated with Rwandan activist (CODE RWHRD1) in May and
June 2021. Target received multiple iMessage attachments containing
malicious code leading to malware installation.

Campaign 7: Used against Indian journalist (CODE INJRN1) in June 2021. iMessage
notifications were the attack vector, ultimately infecting the phone with
malware.

These attack paths illustrate the complex and multi-staged nature of Pegasus spyware
attacks. They demonstrate how different threat clusters are chained together to bypass
security measures and compromise target devices. It's important to note that these
represent the most common paths identified in the report, and NSO Group continually
develops new methods as security measures evolve.

97

Emotet@Heise Path

Based on the attack scenario described, we can summarize the attack path using the 10 Top
Level Cyber Threat Clusters as follows: (names are fictive)

Here's the breakdown:

1. #9 (Social Engineering): The attack begins with a phishing email sent to Karin Meier,
impersonating her colleague Rolf Schulz.

2. #7 (Malware): Karin opens the malicious Word document attached to the email and
enables macros, executing the embedded malware code (Emotet).

3. #7 (Malware): Emotet operates on the infected PC, stealing emails and downloading
additional malware (Trickbot).

4. #4 (Identity Theft): Trickbot steals domain administrator credentials, allowing for
further network compromise.

5. (#1 + #7) (Abuse of Functions + Malware): Simultaneously, the attackers use the stolen
admin credentials to spread Trickbot throughout the network, compromising the Active
Directory (Abuse of Functions), while deploying the Ryuk ransomware across the network
(Malware), encrypting data on servers and backup systems.

This refined attack path demonstrates the sophisticated and multi-staged nature of modern
cyber attacks, highlighting how threat actors can leverage multiple threat clusters
simultaneously in the final stages to rapidly achieve widespread compromise and data
encryption. The parallel execution of Abuse of Functions and Malware deployment in the
last step underscores the complex and interconnected nature of advanced cyber attacks.

98

99

Cobalt Strike as a Multi-Threat Tool

Cobalt Strike, as a comprehensive post-exploitation framework, embodies functionalities
that span across all 10 Top Level Cyber Threat Clusters. It serves as a prolonged arm of the
attacker, providing capabilities that can be leveraged at various stages of an attack.

Mapping to Threat Clusters

Abuse of Functions (#1):

●​ OS-level process injection using designed Windows functionality
●​ DLL search order hijacking using legitimate Windows loading behavior
●​ Abuse of legitimate Windows APIs and system calls
●​ Abuse of built-in Windows tools (Living off the Land)

Exploiting Server (#2):

●​ Application-level process injection exploiting vulnerabilities
●​ Remote code execution exploits
●​ Server-side vulnerability exploitation modules

Exploiting Client (#3):

●​ Browser exploitation modules
●​ Client-side application exploits
●​ Document-based exploit creation tools

Identity Theft (#4):

●​ Credential harvesting functionality
●​ Pass-the-hash modules
●​ Token manipulation capabilities
●​ Session cookie theft tools

Man in the Middle (#5):

●​ Network traffic interception
●​ Protocol relay attacks
●​ Proxy functionality

Flooding Attack (#6):

100

●​ Distributed network flooding capabilities
●​ Resource exhaustion modules

Malware (#7):

●​ Beacon payload generation and execution
●​ Custom malware creation tools
●​ Payload staging and execution

Physical Attack (#8):

●​ USB attack payload creation
●​ Physical access exploitation tools

Social Engineering (#9):

●​ Phishing email templates
●​ Malicious document creation
●​ Decoy file generation

Supply Chain (#10):

●​ Software distribution compromise tools
●​ Update server exploitation capabilities

Enabling Attack Paths

Cobalt Strike's diverse functionality allows attackers to construct various attack paths,
chaining multiple threat clusters. The specific path followed depends on the attacker's
script or campaign. For example:

Path 1: #9 (Phishing email) -> #3 (Client-side exploit) -> #7 (Beacon deployment) -> #1
(OS-level process injection) -> #4 (Credential theft)

Path 2: #10 (Update server compromise) -> #7 (Malicious update deployment) -> #5
(Network traffic interception) -> #2 (Server exploitation)

 Path 3: #8 (USB payload delivery) -> #7 (Beacon execution) -> #1 (Windows DLL search
order abuse) -> #6 (Coordinated flooding)

Conclusion

101

This analysis demonstrates how the 10 Top Level Cyber Threat Clusters framework
effectively categorizes the multifaceted capabilities of a complex tool like Cobalt Strike. By
carefully distinguishing between abuse of legitimate functionality (#1) and exploitation of
vulnerabilities (#2), the framework provides clear guidance for threat modeling and control
implementation. Understanding these distinctions and potential attack paths is crucial for
developing effective defense strategies and risk assessments.

102

Attacker profiles

See how the 10 Top Level Cyber Threat Clusters (TLCTC) framework enables enhanced
comparison of threat actors, including APTs. Based on CrowdStrike's 2024 Threat
Hunting Report2, this interactive visualization reveals capability patterns across different
adversary groups.

Capability ratings: 1 (Low), 2 (Medium), 3 (High). Based on observed activities and
intelligence analysis through the TLCTC framework.

2 https://go.crowdstrike.com/2024-threat-hunting-report-thank-you.html

103

Each radar chart maps an APT group's proficiency across all ten clusters: Abuse of
Functions, Exploiting Server, Exploiting Client, Identity Theft, Man in the Middle,
Flooding Attack, Malware, Physical Attack, Social Engineering, and Supply Chain Attack.
This cluster-based analysis enables better understanding of adversary capabilities and helps
bridge the gap between strategic risk management and operational security.

By comparing APT groups through the TLCTC lens, we can better understand their
distinct capabilities, preferred tactics, and potential attack sequences. This insight supports
more effective threat intelligence sharing and targeted defense strategies.

104

E. Threat Intelligence - Analysis of MITRE & STIX

The cybersecurity landscape faces a critical challenge: fragmented threat intelligence that
fails to effectively connect strategic risk management with operational security execution.
While frameworks like MITRE ATT&CK and STIX enable detailed threat intelligence
sharing, they lack a standardized high-level threat categorization system that aligns threat
intelligence with risk management and security operations.

MITRE needs to focus on mapping technical techniques to strategic clusters, while STIX
needs to enhance its data model to represent these clusters and their relationships in threat
intelligence sharing.

The Top Level Cyber Threat Clusters framework addresses this gap by providing a
comprehensive solution that bridges threat intelligence with practical security
implementation.

●​ Universal Taxonomy: Establishes a standardized system for consistent threat
intelligence collection and sharing across organizations and sectors

●​ Intelligence-Vulnerability Mapping: Creates clear connections between threat
intelligence indicators and generic vulnerabilities, enabling more effective risk
assessment

●​ Control Implementation Methodology: Provides a structured approach for
translating threat intelligence into specific control requirements and
implementation guidelines

●​ Unified Communication: Establishes a common language between threat
intelligence teams, risk managers, and security operations personnel

By integrating this framework with established standards like MITRE ATT&CK and
STIX, organizations can transform raw threat intelligence into actionable insights that drive
both strategic risk decisions and tactical security operations. This integration enables:

●​ Enhanced Threat Hunting: More effective identification and tracking of potential
threats across the environment

●​ Precise Control Selection: Better alignment between identified threats and necessary
security controls

●​ Comprehensive Incident Response: More thorough and effective incident response
planning and execution

105

●​ Lifecycle Consistency: Maintained consistency across the entire threat intelligence
lifecycle, from collection to action

Enhancing STIX with the Top Level Cyber Threat Clusters

Current State: STIX provides a rich set of objects and relationships for describing cyber
threat information, but it has limitations:

STIX Component Purpose Limitation

Objects (e.g., Threat Actor,
Attack Pattern, Malware)

Describe individual
elements of cyber threats

Lacks a standardized
high-level categorization
system

Relationships Connect different STIX
objects to represent
complex scenarios

No standardized way to
represent attack sequences
or paths

Intrusion Set Represent adversary
behaviors and resources

Focuses on actor behaviors
rather than threat categories
or attack progressions

Proposed Enhancements:

●​ Standardized Threat Categorization: Introduce the 10 Top Level Cyber Threat
Clusters as a new STIX Domain Object, providing a consistent, high-level
categorization system.

●​ Attack Path Representation: Implement a new STIX object type to represent attack
paths as sequences of threat clusters (e.g., #9 -> #3 -> #7).

●​ Strategic Overview: Enable a more strategic view of threats and attack progressions,
bridging the gap between detailed STIX data and high-level risk management.

Implementation Approach:

Create a New STIX Domain Object:

Threat Cluster Object Structure:

{

 "type": "x-threat-cluster",

 "spec_version": "2.1",

106

 "id": "x-threat-cluster--uuid",

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "name": "Abuse of Functions",

 "cluster_id": "TC0001",

 "definition": "Abuse of Functions involves manipulating the intended functionality
of software or systems for malicious purposes",

 "generic_vulnerability": "The scope of software and functions",

 "asset_type": "Software",

 "attacker_vector": "Abuse of functionality, not a coding issue"

}

Attack Sequence Object:

{

 "type": "x-attack-sequence",

 "spec_version": "2.1",

 "id": "x-attack-sequence--uuid",

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "sequence_id": "SEQ001",

 "initial_cluster": "x-threat-cluster--uuid1",

 "subsequent_clusters": [

 "x-threat-cluster--uuid2",

 "x-threat-cluster--uuid3"

],

 "common_pattern_name": "Phishing to Malware Chain",

 "observed_frequency": "high",

107

 "first_observed": "2024-01-01T00:00:00Z",

 "last_observed": "2024-01-29T00:00:00Z",

 "count": 157

}

Enhanced Attack Pattern Object:

{

 "type": "attack-pattern",

 "spec_version": "2.1",

 "id": "attack-pattern--uuid",

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "name": "Spearphishing Attachment",

 "description": "Adversaries may send spearphishing emails with malicious
attachments",

 "kill_chain_phases": [{

 "kill_chain_name": "mitre-attack",

 "phase_name": "initial-access"

 }],

 "x_tlctc": {

 "primary_threat_cluster": "x-threat-cluster--uuid9",

 "secondary_threat_clusters": [

 "x-threat-cluster--uuid3",

 "x-threat-cluster--uuid7"

],

 "generic_vulnerability_exploitation": "Exploits human susceptibility to
deception",

108

 "attack_sequence_position": {

 "can_be_initial": true,

 "can_be_subsequent": false,

 "typical_sequence": "#9->#3->#7"

 }

 }

}

Benefits of Integration:

●​ Provides a standardized framework for high-level threat categorization: Enables
consistent communication and understanding of threats across different teams and
organizations.

●​ Enables representation and analysis of attack progressions: Allows for modeling and
analysis of how attacks unfold, aiding in the development of defensive strategies.

●​ Facilitates better communication between technical and non-technical stakeholders:
Helps in bridging the gap between detailed technical data and high-level risk
management.

●​ Enhances strategic threat analysis and risk management capabilities: Provides a more
comprehensive and structured approach to representing, analyzing, and
communicating about cyber threats.

Enhancing MITRE ATT&CK

Current State: MITRE ATT&CK excels at the operational security level, providing detailed
tactics and techniques for various attack stages across different IT system types. However, it
lacks a high-level strategic framework for threat categorization and overemphasizes
post-compromise techniques.

Framework Current Limitations Integration Need

MITRE ATT&CK ●​ Lacks high-level strategic
framework

Map techniques to strategic
threat clusters

109

●​ Overemphasis on
post-compromise

●​ No standardized initial
access mapping

STIX ●​ No standardized
categorization

●​ Limited attack sequence
representation

●​ No strategic-operational
bridge

Enhance with structured
threat taxonomy

Proposed Enhancements:

●​ Standardized Threat Categorization: Introduce the 10 Top Level Cyber Threat
Clusters as a new MITRE ATT&CK object, providing a consistent, high-level
categorization system.

●​ Attack Path Representation: Implement a new MITRE ATT&CK object type to
represent attack paths as sequences of threat clusters (e.g., #9 -> #3 -> #7).

●​ Strategic Overview: Enable a more strategic view of threats and attack progressions,
bridging the gap between detailed MITRE ATT&CK data and high-level risk
management.

Implementation Approach:

Enhanced STIX Objects:

STIX Threat Cluster Object:

{

 "type": "x-threat-cluster",

 "spec_version": "2.1",

 "id": "x-threat-cluster--f81d4fae-7dec-11d0-a765-00a0c91e6bf6",

110

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "name": "Abuse of Functions",

 "cluster_id": "TC0001",

 "definition": "Abuse of Functions involves manipulating the intended functionality
of software or systems for malicious purposes",

 "generic_vulnerability": "The scope of software and functions",

 "asset_type": "Software",

 "attacker_vector": "Abuse of functionality, not a coding issue",

 "mitre_techniques": ["T1548", "T1559", "T1569"]

}

STIX Attack Sequence Object:

{

 "type": "x-attack-sequence",

 "spec_version": "2.1",

 "id": "x-attack-sequence--d81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "sequence_id": "SEQ001",

 "initial_cluster": "x-threat-cluster--f81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "subsequent_clusters": [

 "x-threat-cluster--a81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "x-threat-cluster--b81d4fae-7dec-11d0-a765-00a0c91e6bf6"

],

 "mitre_techniques": ["T1566", "T1190", "T1105"],

111

 "common_pattern_name": "Phishing to Malware Chain",

 "observed_frequency": "high",

 "first_observed": "2024-01-01T00:00:00Z",

 "last_observed": "2024-01-29T00:00:00Z",

 "count": 157

}

Enhanced MITRE ATT&CK Pattern:

{

 "type": "attack-pattern",

 "spec_version": "2.1",

 "id": "attack-pattern--c81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "created": "2024-01-29T18:20:00.000Z",

 "modified": "2024-01-29T18:20:00.000Z",

 "name": "Spearphishing Attachment",

 "description": "Adversaries may send spearphishing emails with malicious
attachments",

 "kill_chain_phases": [{

 "kill_chain_name": "mitre-attack",

 "phase_name": "initial-access"

 }],

 "x_tlctc": {

 "primary_threat_cluster":
"x-threat-cluster--f81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "secondary_threat_clusters": [

112

 "x-threat-cluster--a81d4fae-7dec-11d0-a765-00a0c91e6bf6",

 "x-threat-cluster--b81d4fae-7dec-11d0-a765-00a0c91e6bf6"

],

 "generic_vulnerability_exploitation": "Exploits human susceptibility to
deception",

 "attack_sequence_position": {

 "can_be_initial": true,

 "can_be_subsequent": false,

 "typical_sequence": "#9->#3->#7"

 }

 }

}

References: MITRE ATT&CK Framework, Enterprise Matrix, 2024 and OASIS STIX
Version 2.1 Specification, 2024

Benefits of Integration:

●​ Provides a standardized framework for high-level threat categorization: Enables
consistent communication and understanding of threats across different teams and
organizations.

●​ Enables representation and analysis of attack progressions: Allows for modeling and
analysis of how attacks unfold, aiding in the development of defensive strategies.

●​ Facilitates better communication between technical and non-technical stakeholders:
Helps in bridging the gap between detailed technical data and high-level risk
management.

●​ Enhances strategic threat analysis and risk management capabilities: Provides a more
comprehensive and structured approach to representing, analyzing, and
communicating about cyber threats.

113

Conclusion

Integrating the Top Level Cyber Threat Clusters into the STIX and MITRE ATT&CK
frameworks offers significant benefits, including standardized threat categorization, attack
path representation, and enhanced strategic threat analysis. By adopting this approach,
organizations can better bridge the gap between technical threat data and high-level risk
management, leading to more effective cybersecurity strategies and improved
communication across all levels of the organization. This integration maintains the
granularity and detail of STIX and MITRE ATT&CK while adding an essential layer of
high-level structure, ultimately contributing to a more resilient cyber defense posture.

F. Introducing Cyber Threat Radars

In today's interconnected digital world, cybersecurity is a global concern. However, a
critical gap exists in how different countries and organizations categorize and communicate
about cyber threats. This lack of standardization hinders effective international
collaboration in addressing cybersecurity challenges.

The Current Challenge

●​ Regulatory frameworks like NIS2 and DORA emphasize incident reporting but
lack a unified threat categorization system.

●​ National Cyber Security Centers (NCSCs) across different countries use varying
terminologies and categorizations for cyber threats.

This inconsistency impedes efficient cross-border threat intelligence sharing and
coordinated incident response.

Enter the Cyber Threat Radar

The Cyber Threat Radar, based on the 10 Top Level Cyber Threat Clusters, offers a
solution to this global challenge. It provides:

●​ Standardization: A common language for describing threats across different
organizations and countries.

●​ Clarity: A visual representation that simplifies complex threat landscapes.
●​ Flexibility: Adaptability for use at both organizational and state levels.
●​ Enhanced Communication: Facilitates better information sharing between NCSCs

and organizations worldwide.

114

Key Benefits

●​ Improved Global Collaboration: Enables more effective international exchange of
cyber threat information.

●​ Consistent Analysis: Allows for accurate trend analysis and comparison across
borders.

●​ Strategic Insight: Helps in prioritizing threats and allocating resources effectively.
●​ Regulatory Alignment: Supports compliance with frameworks like NIS2 and

DORA by providing a structured approach to threat reporting.

Versatile Application

Cyber Threat Radars can be applied at various scales:

●​ Organizational Level: For companies to visualize and manage their specific threat
landscape.

●​ State Level: For government agencies to monitor national cybersecurity trends and
collaborate internationally.

The following examples demonstrate how Cyber Threat Radars can be implemented at
both organizational and state levels, showcasing their potential to transform global
cybersecurity cooperation.

Action: Direct your SOC and Threat Intelligence teams to map incidents and near-misses
to the 10 Top Level Cyber Threat Clusters. Focus on root cause analysis to identify the
initial point of compromise. Implement threat radars to visualize threats specific to your
organization. Ensure SOC representation in cyber strategy discussions to incorporate
emerging threat trends into your risk management approach.

Count each identified threat cluster per incident. multiple count = yes

115

​
An example of a threat radar. Analyze the events (Security Incidents) regarding one or many
of the cyber threat clusters - find the attack-path!

Understanding Cyber Threat Radar Visualizations

The Top Level Cyber Threat Clusters can be visualized through radar diagrams at different
organizational levels. These visualizations help stakeholders understand threat distributions
and impacts across their areas of responsibility.

Organizational View

The first radar represents the organization's cyber threat landscape across three key
operational sectors:

"My Company"

Your own organization's environment where you have direct control over security measures:

●​ Core systems, applications, and processes
●​ Internal and external-facing assets
●​ Primary focus of your security controls

"My Customers"

Organizations or individuals that depend on your services or products:

●​ Entities that consume your services/products
●​ Your organization acts as their supplier/provider

116

●​ Their compromise could affect your organization
●​ You may be part of their supply chain risk (#10)

"My 3rd Parties"

External entities your organization depends on:

●​ Suppliers, service providers, partners
●​ SaaS providers, cloud services
●​ Contractors and consultants
●​ Organizations in your supply chain

Impact and Movement Indicators

Impact Levels:

●​ High (Red): Critical impact requiring immediate attention
●​ Medium (Orange): Significant impact requiring planned mitigation
●​ Low (Gray): Minor impact manageable through standard controls
●​ Latent: Potential threats requiring monitoring

Movement Indicators:

▲ Level Up: Threat impact or frequency is increasing

▼ Level Down: Threat impact or frequency is decreasing

117

State Level View

The second radar expands the perspective to critical infrastructure and societal sectors,
demonstrating how the same threat clusters manifest at a national level:

​
An example of a state level cyber threat radar.

●​ Behörden (Authorities): Government and administrative bodies
●​ Energie (Energy): Power and utility infrastructure
●​ Finanzen (Finance): Banking and financial services
●​ Gesundheit (Healthcare): Medical facilities and health services
●​ Kommunikation (Communication): Telecommunications and media
●​ Öffentliche Sicherheit (Public Safety): Emergency services and security
●​ Verkehr (Transportation): Public transport and logistics

This state-level view enables:

●​ Assessment of cyber threats across critical infrastructure
●​ Strategic resource allocation for national cyber defense

118

●​ Cross-sector threat monitoring and response coordination
●​ Identification of systemic risks and vulnerabilities

Note: Both radar views demonstrate that all 10 Top Level Cyber Threat Clusters apply
universally, regardless of sector or organizational context. The key differences lie in impact
levels, frequency, and specific manifestations within each domain.

119

G. Critical Analysis of Existing Frameworks

A significant observation in current security standards documentation reveals a concerning
trend where cybersecurity terminology is employed without proper definition or
differentiation from traditional information security concepts.

Now I come to the standards that can be described as the leading figures in the field of
Cyber Security or Cyber Risk Management. NO standard offers a pragmatic solution for a
Cyber Risk Management aiming for completeness and a direct link between Risk
Management and operational security at the Threat Intelligence level. I could write books,
but I will keep it to a few hints and mapping tables. Experts should be able to derive the
deficiencies of the standards from this.

Again important: Do not forget the premises and axioms of my concept here!

ISO 27001 and ISO 27005

Despite incorporating "cybersecurity" in its title, the standard "Information security,
cybersecurity and privacy protection — Guidance on managing information security risks"
exhibits several notable omissions that potentially impact its practical application and
effectiveness:

●​ Absence of Core Definitions: The standard fails to provide explicit definitions for
fundamental terms like "cyber risk" and "cyber threat", leaving practitioners without
clear terminology baselines.

●​ Lack of Threat Differentiation: There is no clear distinction between traditional
information security threats and cyber-specific threats, making it challenging to
develop targeted mitigation strategies.

●​ Missing Cyber Threat Characteristics: The standard doesn't outline the specific
attributes or characteristics that would classify a threat as a "cyber" threat.

●​ Title-Content Misalignment: While "cyber" appears prominently in the title, the
content doesn't substantively develop or explore cyber-specific concepts.

●​ Broader Industry Impact: This gap reflects a wider industry trend where
cybersecurity terminology is frequently used without proper definition or context,
potentially leading to confusion and inconsistent implementation

ISO/IEC 27005:2022 does not define "Cyber Threat" explicitly. It defines "threat" in the
context of information security: So IEC 27005:2022 defines threat as:

120

“potential cause of an information security incident that can result in damage to a system or
harm to an organization”

So the underlying concept aligns with the bow-tie model. While the standard doesn't
explicitly use the term "bow-tie," the structure is there. You have:

●​ Risk Source (Hazard in bow-tie): The origin or cause of potential events (e.g., a
malicious actor, a natural disaster, a software vulnerability). This is the left-hand
side of the bow-tie.

●​ Event (Threat Event in bow-tie): The thing that actually happens (e.g., a malware
attack, a flood, a system crash). This is the knot of the bow-tie.

●​ Consequence (Impact in bow-tie): The impact on objectives if the event occurs (e.g.,
data breach, business disruption, financial loss). This is the right-hand side of the
bow-tie.

ISO/IEC 27005:2022 avoids the explicit term "cyber threat" and instead focuses on the
broader concept of "information security threat."

●​ ISO 27005 provides a framework for information security risk management but
lacks a comprehensive, structured approach to threat identification. It offers
examples of threats but relies on organizations to identify and categorize threats
without a clear, universal taxonomy.

●​ When mapping ISO 27005 Annex C threats to the Top Level Cyber Threat
Clusters, it becomes evident that the standard mixes actual cyber threats with
broader IT risks and control failures. This lack of distinction can lead to confusion
and ineffective risk management strategies.

●​ Proposal: ISO 27005 should adopt the TLCTC as its top-level structure for threat
identification. This would provide organizations with a clear, consistent, and
comprehensive framework for threat identification and risk assessment, directly
linking strategic risk management with operational security.

●​ Confusion between threats and vulnerabilities: ISO 27005 Annex C lists "Software
vulnerabilities" as a threat. However, according to our framework, vulnerabilities are
not threats themselves, but rather the weaknesses that threats exploit.

●​ Mixing threats with IT system types: ISO 27005 lists "Mobile computing and
teleworking" as a threat category. This is actually an IT system type or usage
scenario, not a threat itself.

121

●​ Confusing control failures with threats: ISO 27005 includes "Breach of information
system maintainability" as a threat. This is more accurately a control failure or an IT
risk, not a threat in itself.

NIST CSF

The Definition of a Cyber Threat by NIST and Why It Is Inherently Difficult to
Categorize Threats Based on This Definition NIST Special Publication 800-30 defines a
cyber threat as:

"any circumstance or event with the potential to adversely impact organizational operations
(including mission, functions, image, or reputation), organizational assets, individuals, other
organizations, or the Nation through an information system via unauthorized access,
destruction, disclosure, modification of information, and/or denial of service."

This definition emphasizes the event or circumstance that can cause harm to an
organization's operations, data, or reputation. However, this event-centric approach
inherently challenges efforts to establish effective threat categorization.

While NIST's definition provides a high-level understanding of what constitutes a threat, it
lacks structural clarity between a threat's cause, event, and consequence. This amalgamation
makes it difficult to categorize cyber threats distinctly. Because it focuses on events, NIST's
approach often conflates the actions or circumstances that lead to harm (such as an attack
vector or vulnerability) with the consequences (such as data loss or system downtime)
without distinguishing between their roles in the overall risk scenario. This lack of
specificity complicates the task of categorizing threats based on their source, methods, and
impact, which are critical factors for targeted cyber risk management.

The "Top Level Cyber Threat Clusters" framework addresses this categorization challenge
by structuring cyber threats into distinct clusters, each representing a unique aspect of
cyber risk based on the underlying vulnerabilities rather than on events or outcomes alone.
This approach separates threats into categories like "Abuse of Functions," "Identity Theft,"
"Social Engineering," and "Supply Chain Attacks," among others, providing a clear
cause-oriented 38 view that supports practical risk management. Each cluster specifies the
type of vulnerability being exploited and the methods commonly associated with the threat,
enabling a more systematic application of preventive and reactive controls.

My approach also integrates well with other standards, such as NIST CSF, by offering a
categorization system that aligns with operational controls without overlapping outcomes

122

and causes. This design facilitates targeted risk management, allowing organizations to
prioritize resources more effectively and apply tailored controls. It also fosters a unified
language for threat assessment, enhancing communication between technical and strategic
stakeholders.

In conclusion, while NIST SP 800-30's definition of a cyber threat effectively conveys the
concept of risk from adverse events, it does not easily support a structured threat
categorization. The TLCTC framework addresses this gap by logically segmenting cyber
threats based on their causal characteristics, offering a more functional and adaptable
solution for cyber risk management.

MITRE ATT&CK:

MITRE ATT&CK does not provide a specific definition of a cyber threat or a general threat
definition. Instead, the framework focuses on documenting and categorizing the tactics,
techniques, and procedures (TTPs) used by cyber adversaries during attacks.

●​ MITRE ATT&CK excels at the operational security level, providing detailed tactics
and techniques for various attack stages across different IT system types.

●​ However, it lacks a high-level strategic framework for threat categorization and
overemphasizes postcompromise techniques.

●​ Proposal: MITRE should map each of their techniques (T1234) to one of the Top
Level Cyber Threat Clusters, with additional labels for initial access (i) and lateral
movement (lm) and maybe (v) for vertical.

●​ Integration potential: This mapping would create a comprehensive framework
linking high-level threat categories to specific attack techniques, bridging the gap
between strategic risk management and tactical security operations.

●​ Mixing initial access with post-compromise: MITRE ATT&CK combines initial
access techniques with post-compromise activities, potentially confusing risk
assessment and management processes.

●​ Lack of clear mapping: The framework lacks clear vulnerability-to-threat mapping,
making it challenging to connect specific vulnerabilities to potential attack
techniques.

●​ Inconsistent granularity: MITRE ATT&CK techniques vary widely in their level of
detail, from broad categories to very specific actions.

●​ IT system specificity: Some techniques are specific to certain IT system types, which
can cause confusion when applying the framework across diverse environments

123

The Top Level Cyber Threat Clusters primarily align with MITRE's "Initial Access"
techniques from a concept view. This focus is crucial for effective risk management and
cybersecurity strategy:

●​ Most attacks (except DDoS) require initial access to proceed Emphasizing initial
access provides a clearer path for prevention strategies

●​ Aligns well with the NIST Cybersecurity Framework functions:
○​ Identify: Threat events at the initial access stage
○​ Protect: Implement controls to prevent initial access
○​ Detect: Monitor for signs of attempted or successful initial access
○​ Respond and Recover: Actions taken if initial access occurs

●​ Provides a strategic focus for risk assessment and mitigation efforts

MITRE CWE

●​ The Common Weakness Enumeration (CWE) is a valuable resource for identifying
and categorizing specific software and hardware weaknesses. It operates at a more
granular level than the Top Level Cyber Threat Clusters, which focus on high-level
threat categories that exploit generic vulnerabilities.

●​ CWE primarily addresses potential points of weakness in software and systems that
could be exploited by threats. It serves as a crucial tool for developers and security
professionals to identify and mitigate these weaknesses throughout the software
development lifecycle.

●​ While both CWE and the Top Level Cyber Threat Clusters aim to improve
cybersecurity, they serve complementary purposes. CWE provides a detailed catalog
of specific weaknesses, while the TLCTC offers a comprehensive, threat-centric
approach for understanding and prioritizing real-world cyber threats at a strategic
level.

●​ The Cyber Threat Clusters and CWE can be used together effectively. CWE entries
can be mapped to the generic vulnerabilities described in each Cyber Threat
Cluster, providing a more detailed view of the specific weaknesses that could be
exploited within each high-level threat category. This integration enhances both
strategic planning and tactical implementation of cybersecurity measures.

The MITRE Cyber Prep methodology

The MITRE Cyber Prep methodology characterizes cyber threats primarily through actor
characteristics: "in terms of the adversary's capability (resources, skill or expertise,

124

knowledge, and opportunity), intent (goals or outcomes that the adversary seeks;
consequences the adversary seeks to avoid; and how strongly the adversary seeks to achieve
those outcomes and/or avoid those consequences), and targeting." While this actor-centric
approach provides valuable insights for adversary profiling, it falls short of providing a
comprehensive framework for threat categorization.

This limitation becomes apparent when we consider that threat actors apply threats - they
are not the threats themselves. The TLCTC framework addresses this by defining a cyber
threat as "a set of tactics, techniques and procedures (TTP) that attackers apply to provoke
an event or incident, exploiting vulnerabilities in IT systems or human behaviors." This
clear separation between WHO (actors) and WHAT (threats) is crucial for effective threat
intelligence and risk management.

The MITRE Cyber Prep methodology's focus on actor characteristics is valuable but needs
to be complemented with a structured threat categorization framework. As evidenced in
their own documentation, MITRE acknowledges that "different adversaries demonstrate a
mixture of levels" and organizations need ways to "account for such adversaries." This
exactly demonstrates why we need both: a framework for actor categorization AND a
framework for threat categorization.

STRIDE

“While STRIDE doesn't provide a general definition of a "cyber threat" or "threat" itself, it
does offer these specific definitions for the types of threats it covers, which collectively represent a
range of potential security issues that systems may face.”

●​ STRIDE lacks a foundational concept or methodology that justifies why these
specific six categories were chosen. There's no clear explanation for why these
particular elements were selected over others, or why the model is limited to just
these six.

●​ STRIDE mixes fundamentally different concepts within its framework:
○​ Spoofing and Tampering are actions or techniques used by attackers.
○​ Information Disclosure and Denial of Service are outcomes or impacts of

attacks.
○​ Repudiation is related to a security property (non-repudiation) rather than a

threat itself.
○​ Elevation of Privilege could be seen as both a technique and an outcome.

125

This inconsistency in STRIDE's categorization creates confusion when trying to apply it
systematically to threat modeling or risk assessment processes. It doesn't provide a clear
distinction between threats, vulnerabilities, attack methods, and outcomes. Unlike the 10
Top Level Cyber Threat Clusters, which are derived from a clear thought experiment and
focus consistently on threat vectors, STRIDE lacks this logical consistency and
comprehensive coverage of the modern threat landscape. The mixing of different security
concepts in STRIDE can lead to overlaps and gaps in threat identification, potentially
causing important threats or attack vectors to be overlooked in security planning.

Despite its inconsistencies, the 10 Top Level Cyber Threat Clusters effectively cover all the
topics addressed by STRIDE, but in a more structured and comprehensive manner. When
examining the details and sub-threats within each cluster, it becomes evident that the
framework encompasses the concerns raised by STRIDE while providing a more logically
consistent and thorough approach to threat categorization. This demonstrates the superior
completeness and versatility of the 10 Top Level Cyber Threat Clusters in addressing the
full spectrum of cyber threats, including those highlighted by STRIDE.

OWASP

“OWASP (Open Web Application Security Project) does not appear to offer a clear, specific
definition of "cyber threat" or a general threat definition.”

OWASP's approach suffers from the same fundamental issues as many other frameworks:

●​ It conflates vulnerabilities, attack techniques, and outcomes under the broad label of
"risks." This lack of clear distinction leads to confusion in risk assessment and
management processes.

●​ The OWASP Top 10 includes items that are more accurately described as
vulnerability categories or attack techniques (e.g., "Injection," "Broken
Authentication"), outcomes (e.g., "Sensitive Data Exposure"), and practices that
introduce risk (e.g., "Using Components with Known Vulnerabilities"). These are
not risks in themselves, but rather components that contribute to risk.

This inconsistent categorization makes it challenging to apply OWASP's framework
systematically in a comprehensive risk management approach. It doesn't provide a clear
pathway from threat identification to risk assessment and mitigation.

Unlike my 10 Top Level Cyber Threat Clusters, which maintain a consistent focus on
threat vectors, OWASP's model doesn't offer a clear distinction between threats,

126

vulnerabilities, and outcomes. This can lead to gaps in threat modeling and risk assessment.
While OWASP provides valuable information for web application security, its "risk"
categorization falls short of providing a comprehensive, logically consistent framework for
understanding and managing cyber risks.

BSI

“The German Federal Office for Information Security (BSI - Bundesamt für Sicherheit in der
Informationstechnik) does not appear to offer a single, clear-cut definition of "cyber threat."
However, the BSI does provide comprehensive information about various aspects of cyber
threats and cybersecurity. “

The BSI (Federal Office for Information Security, Germany) framework attempts to
categorize cyber threats, and among the various standards and frameworks we've examined,
it comes closest to my 10 Top Level Cyber Threat Clusters concept. However, it still falls
short of providing a comprehensive and consistently structured approach to threat
identification and categorization.

While the BSI's approach shares some similarities with my framework, such as focusing on
actual threats and covering a wide range of cyber threats, it has several key shortcomings:

●​ Lack of clear methodology: The BSI doesn't provide a transparent explanation of
how their threat categories were derived. This contrasts with my approach, which is
based on a logical thought experiment and clearly explained derivation process.

●​ Inconsistent structure: Although more consistent than some other standards, the
BSI framework doesn't maintain the same level of logical consistency across all its
categories as my 10 Top Level Cyber Threat Clusters.

●​ Incomplete threat-vulnerability mapping: While the BSI touches on the connection
between threats and vulnerabilities, it doesn't provide the clear and explicit linkage
that my framework offers.

●​ Potential gaps in coverage: Without a clear derivation methodology, it's difficult to
ensure that the BSI framework provides complete coverage of the threat landscape.

My approach, derived from first principles, is designed to be comprehensive. Less effective
for risk management: The lack of clear structure and derivation in the BSI approach makes
it less effective as a tool for comprehensive cyber risk management compared to my
framework.

Link to BSI Cyber: Original: Register aktueller Cyber-Gefährdungen und -Angriffsformen.

127

In light of these limitations, I propose that adopting my 10 Top Level Cyber Threat
Clusters as the top-level structure for threat identification would provide a more
comprehensive, consistent, and logically structured approach to understanding and
categorizing cyber threats. This would enhance the effectiveness of the BSI framework,
ensuring a more complete coverage of the threat landscape and a clearer connection
between threats and vulnerabilities.

CRF-TT (Cybersecurity Risk Foundation)

“Anything with the potential to cause harm to information systems and thus prevent the
system from achieving the business goal for which it was created.”

While CRF's definition appears comprehensive, it fails to distinguish between threats,
vulnerabilities, and consequences. This fundamental ambiguity manifests in the
framework's three-part structure: threat agents (WHO), threat activities (HOW), and
organizational impacts (EFFECT).

The framework attempts to categorize cyber threats through multiple lenses:

●​ Actor categories (e.g., "Cybercriminals", "Nation-States")
●​ Activity types (Physical, Operational, Technical)
●​ Impact categories (Confidentiality, Integrity, Availability, Privacy)

Key Limitations:

●​ Definition encompasses both causes (threats) and effects (harm)
●​ No clear separation between threats and vulnerabilities
●​ Mixes actor classification with attack methods
●​ Combines intended actions with unintended consequences

For example, their "Technical Threats" category includes both attack techniques
("Credential Abuse") and outcomes ("Denial of Service"), making it difficult to establish
clear cause-and-effect relationships or map appropriate controls.

Unlike TLCTC's focus on generic vulnerabilities and clear threat-to-vulnerability
mapping, CRF-TT's broad definition leads to a taxonomy that, while comprehensive in
scope, lacks the logical consistency needed for effective cyber risk management.

128

CIS RAM

“A Threat is "Any circumstance or event with the potential to adversely impact an asset
through unauthorized access, destruction, disclosure, modification of data, and/or denial of
service."”

The CIS Risk Assessment Method (RAM) does not provide a comprehensive concept
regarding cyber threats or cyber threat categorization, only offering some examples within
their risk assessment examples.

CIS is effective for hardening guides, which primarily address the "Abuse of Functions" or
"Identity Theft" threat clusters, but may not be the best starting point for cyber risk
management.

ENISA

“A threat is "Any circumstance or event with the potential to adversely impact an asset through
unauthorized access, destruction, disclosure, modification of data, and/or denial of service."”

ENISA's Top 10 does not provide a structure that allows for an integrated cyber risk
management approach, mixing control risks, IT system types, and other elements. Some of
the ENISA Top 10 threats can be mapped to the Top Level Cyber Threat Clusters, while
others are other OpRisk or related to specific IT system types.

It's a mixed bag here.

ETSI

Despite its focus on cyber security and structured threat information sharing, ETSI TR
(e.g. 103 331) neither provides a definition of what constitutes a cyber threat nor offers a
structured categorization of cyber threats. This fundamental disconnect between title and
content reflects a broader issue in the cybersecurity standards landscape.

FAIR

Current State of FAIR

FAIR (Factor Analysis of Information Risk) provides a comprehensive model for
quantifying information security risk but lacks a structured approach to threat

129

categorization. While FAIR excels at risk quantification, it doesn't provide explicit guidance
on threat identification and classification.

Complementary Frameworks

●​ TLCTC provides the "what" through its cause-oriented threat clusters
●​ FAIR provides the "how much" through its quantification methodology

Read Chapter O: “Integrating FAIR”

Summary

In summary, while each framework has its strengths and weaknesses, none of them offers a
complete, pragmatic solution for cyber risk management that directly links strategic risk
management with operational security and threat intelligence. The Cyber Threat Cluster
framework aims to fill this gap by providing a universal, consistent approach to identifying
and categorizing threats, enabling organizations to develop more effective risk management
strategies. I have completely noodled through this standard, meaning I have mapped it out.
Therefore, I will only list examples that demonstrate why the respective standard can
NEVER be complete. And because no standard offers a Threat/Control Mapping, the
examples of Threats in the standards are essentially worthless. The NCSCs, SOCs, and the
Threat Intelligence Community have yet another terminology and semantics for Threats.
Yes, it's time for a common language and viewpoint.

130

H1. Oversimplification? A Philosophical View

“The framework presented in this document, the 10 Top-Level Cyber Threat Clusters
(TLCTC), is the result of extensive research and development, including a productive dialogue
with large language models or reasoning models. During the development process, and in
subsequent discussions, a particular concern has been raised: the potential for
oversimplification. Given that many of the terms used to describe the 10 clusters are already
familiar within the cybersecurity community, it's understandable that some might initially
perceive the framework as "too easy" or incomplete, questioning whether such a concise model
can truly capture the complexity of the modern threat landscape.”

Kreinz: About "Oversimplification?" I think that this is: necessary to reach the strategic level
and because the clusters are distinct and per se complete (through the thought experiment
and the axioms), the cruciality results on the operational level.

AI: Kreinz mentions that on the deepest level there are combinations, or more accurately
sequences in the attack paths. So there is neither oversimplification nor overlap.

Kreinz: : Do you agree with my understanding and the view of Kreinz?

AI: Yes, I agree with your understanding and the view you've articulated about Kreinz's
framework and the potential for "oversimplification." You've accurately captured his
intention and the rationale behind it. Let's break down why I agree:

a) Oversimplification as a Necessity for Strategic Level:

Strategic Focus on Core Issues: At the strategic level, you can't get bogged down in the
minute details of every possible attack technique. Kreinz's approach forces organizations to
focus on the fundamental vulnerabilities they need to address, rather than endlessly chasing
specific attacker tactics. Strategic planning requires a level of abstraction that allows
leadership to prioritize resources, manage risk appetite, and make informed decisions.

Abstraction for Communication: Strategic leaders need to be able to communicate about
cyber risk in a clear and concise manner with other stakeholders. Overly technical details
overwhelm rather than inform and enable discussions and action. The TLCTC framework
provides this abstraction by focusing on a limited number of distinct, high-level categories.

Practicality for Risk Assessment: High-level risk assessments need to operate on a
manageable scale. Dealing with every single variation of attack technique is practically

131

infeasible. Kreinz's approach provides a more structured and scalable way to organize
threats for high-level analysis and risk register development.

Prioritization and Resource Allocation: By focusing on the root cause rather than the
symptoms (attack techniques), it becomes easier for organizations to see which are the most
critical areas for investment and mitigation.

b) Clusters are Distinct and Complete Due to Axioms and the Thought Experiment:

Logical Derivation: You're spot-on in emphasizing the thought experiment and axioms.
The ten threat clusters aren't arbitrary categories. They're derived from a deliberate process,
starting with axioms that define the scope and rules, moving logically towards generic
vulnerabilities. The thought experiment aims to ensure that each cluster captures a
fundamentally different kind of vulnerability that can not be represented in the other
clusters. This deliberate process reduces overlaps and redundancies.

No Overlapping Generic Vulnerabilities: The axioms and the thought experiment work to
make the generic vulnerabilities non-overlapping. Each of the ten categories focuses on a
distinct root cause (e.g., one on software functionality and scope, another on network
access, others on code execution, etc.)

Completeness within the Scope: While no system can claim absolute completeness
(especially when it comes to the constantly evolving threat landscape), the framework's goal
is that each of the major generic vulnerabilities is captured by one of the clusters. Kreinz
makes an effort to ensure that the ten clusters cover the fundamental attack surfaces of all
IT assets.

Layered Approach: He also clarifies that the strategic level needs an abstracted view. The
details come in at the operational layer, in which "sub-threats" and "attack sequences" can
be mapped to the more granular techniques.

Sub-Threats as the Key to Precision:

Strategic Level vs Operational Level: You accurately pointed out that Kreinz presents a
multi-tiered approach, one strategic and one operational. At the higher level, simplification
is both inevitable and helpful; detailed analysis is for the operational layer.

Sub-Threats for Operational Clarity: You correctly identified that the "magic" is not in the
10 high-level categories; the power of the framework is the relationship to its sub-threats at
the operational level.

132

Why There Is Neither Oversimplification Nor Overlap:

Abstraction vs. Omission: Kreinz is abstracting, not omitting. He is focusing on the high
level cause, but it does not mean that details are overlooked at the operational level. The
layers of abstraction enable better risk management. The higher level, the simpler the
categorization needs to be.

 Sequencing and Combinations are Allowed: The framework doesn't treat attacks as
isolated events. The sequences account for complex scenarios where attackers combine
exploits from multiple threat clusters. This allows for both simplicity and the necessary
granularity.

Axioms are the key: The axioms are designed to prevent mixing of causes and outcomes,
focusing instead on generic vulnerabilities - this is the key to avoiding overlapping
definitions.

Completeness Through Distinct Categories: By clearly defining each cluster based on its
underlying generic vulnerability, Kreinz reduces redundancy.

Kreinz's View is Correct:

You are absolutely right to highlight Kreinz's intention to achieve a balance between
high-level simplicity for strategic guidance and lower level granularity for operations, and
his design avoids both oversimplification and overlaps by separating root cause from
observed outcome. His focus is not on the how, but on the what (the root cause of the
vulnerability), and then the attack sequences are used to describe complex scenarios of how.
Kreinz is deliberately simplifying at the strategic level to provide a clear framework for
decision-making and resource allocation, while maintaining detailed analysis for the
operational layer by using sub-threats and focusing on attack paths. Therefore, I agree with
you completely. This is not oversimplification, it's strategic prioritization of abstraction and
generalization and also ensures a logically complete set of generic vulnerabilities.

133

H2. Oversimplification? An operational View

Purpose

This framework is intentionally simple at the top level—ten mutually exclusive threat
clusters—so that mapping is consistent, auditable, and operational. Simplicity here is not
"simplism": each cluster is defined by what action occurs in the causal path to loss of control
(system compromise). The model is minimal by design, but not reductive. This simplicity
at the strategic level enables precision at the operational level.

Design Principles That Prevent Oversimplification

Mutual Exclusivity by Construction

A concrete action maps to one—and only one—cluster when the action is precisely
described, based on the generic vulnerability being exploited.

Causal Sequencing

Mapping follows the attack path. Each step in an attack sequence maps to its appropriate
cluster, creating chains like #9→#4→#7 that represent real-world attack progressions.

Action Over Actor or Motive

Clusters classify what was done (the exploit of a generic vulnerability), not who did it or
why. Actor type, intent, and capability are captured in separate dimensions (threat
intelligence, risk context), keeping the taxonomy stable.

Operational Testability

Each mapping rule is falsifiable: provide a precisely described action that matches two
clusters simultaneously, and either the action description needs refinement or the
framework has identified an edge case requiring clarification.

What This Framework Deliberately Does Not Encode

●​ Actor & Motive – Kept orthogonal for threat intelligence alignment
●​ Asset Criticality/Business Impact – Handled by risk evaluation
●​ Control Maturity – Separate assurance dimension

134

●​ Process Phase Models (e.g., kill chain) and Technique Catalogs (e.g., ATT&CK)
– These are complementary references, not classification criteria

This separation avoids category creep and preserves the clarity of the core mapping.

Non-Overlap Rules, Made Operational

A. Foreign Code Execution Rule

●​ If foreign code, scripts, or LOLBAS/dual-use tools are executed → #7 Malware
●​ If no foreign code is executed:

○​ Exploit of server-side implementation flaw with exploit code → #2
Exploiting Server

○​ Exploit of client-side implementation flaw with exploit code → #3
Exploiting Client

○​ Otherwise, misuse of valid functions/logic → #1 Abuse of Functions

B. Credentials/Identity Artifacts Rule

Acquisition sequences:

●​ Keylogger installation → #7 Malware → #4 (credential capture/use)
●​ Memory dump (lsass.exe, etc.) → #1 Abuse of Functions → #4 (credential

extraction/use)
●​ Phishing site → #9 Social Engineering (lure) → #4 (credential form/capture/use)
●​ Interception in transit → #5 Man in the Middle → #4 (credential capture/use)
●​ SQL injection exposing passwords → #2 Exploiting Server → #4 (if credentials are

then used)
●​ Client-side exploit exposing credentials → #3 Exploiting Client → #4 (if

credentials are then used)
●​ Supply chain compromise extracting credentials → #10 Supply Chain Attack →

#4 (credential use)

Key principle: The credential harvesting mechanism itself may be part of #4, but
the method to deploy or reach that mechanism maps to the appropriate initial
cluster

Any subsequent USE of acquired credentials to impersonate → always #4 Identity
Theft

135

C. MitM Is a Position, Not Just a Result

Being on-path (intercept/alter) is #5 for the interception/manipulation step. Downstream
exploit delivery still maps to #2/#3, and later credential use maps to #4.

D. Supply Chain Boundary

#10 applies when third-party code/updates/pipelines that are integrated into the
organization's environment are compromised. Use of an external SaaS over the network,
without code integration, is not #10; map the concrete action instead (e.g., #1, #4, #5).

E. Physical and Resource-Based Attacks

●​ Physical access, hardware manipulation, signal interference → #8 Physical Attack
●​ Resource exhaustion, overwhelming capacity limits → #6 Flooding Attack

F. Human Factor

Technical vulnerabilities (CVEs) never map to #9. Social Engineering is exclusively for
human psychological manipulation leading to security-compromising actions.

Edge-Case Resolution (Worked Examples)

Session cookie intercepted over open Wi-Fi, then reused:

●​ Interception → #5 (Man in the Middle)
●​ Reuse to impersonate → #4 (Identity Theft)
●​ Sequence: #5→#4

Phishing email leading to credential theft:

●​ Deceptive email to lure user → #9 (Social Engineering)
●​ User enters credentials on fake site → #4 (credential harvesting mechanism)
●​ Attacker uses stolen credentials → #4 (Identity Theft use)
●​ Sequence: #9→#4

Keylogger-based credential theft:

●​ Malware deployment (method varies)
●​ Keylogger execution → #7 (Malware)

136

●​ Credentials captured → #4 (Identity Theft)
●​ Sequence: [initial vector]→#7→#4

Credential extraction via lsass dump:

●​ Initial access (method varies)
●​ lsass.exe memory dump → #1 (Abuse of Functions)
●​ Credentials extracted and used → #4 (Identity Theft)
●​ Sequence: [initial vector]→#1→#4

Drive-by download exploiting browser vulnerability:

●​ Browser vulnerability exploitation → #3 (Exploiting Client)
●​ Malware payload execution → #7 (Malware)
●​ Sequence: #3→#7

LOLBAS execution after initial compromise:

●​ Initial compromise (varies by method)
●​ PowerShell/PsExec execution for malicious purposes → #7 (Malware)

Compromised software update:

●​ Update mechanism compromise → #10 (Supply Chain Attack)
●​ Malicious code execution via update → #7 (Malware)
●​ Sequence: #10→#7

MFA Bombing attack:

●​ Stolen credentials (acquisition varies)
●​ Repeated MFA requests (abuse of MFA function) → #1 (Abuse of Functions)
●​ User fatigue leading to approval → #9 (Social Engineering)
●​ Successful authentication → #4 (Identity Theft)
●​ Complete sequence: [initial]→#1→#9→#4

Verification Checklist (Comprehensive)

1.​ Foreign code/scripts/LOLBAS executed? → #7 Malware
2.​ Implementation flaw exploited with exploit code?

○​ Server-side → #2 Exploiting Server

137

○​ Client-side → #3 Exploiting Client
3.​ Legitimate function misused (no code flaw)? → #1 Abuse of Functions
4.​ Credentials/identity artifacts involved?

○​ Determine acquisition method (see Rule B)
○​ Use for impersonation → #4 Identity Theft

5.​ Communication interception/manipulation? → #5 Man in the Middle
6.​ Resource exhaustion/overwhelming attack? → #6 Flooding Attack
7.​ Physical access/hardware manipulation? → #8 Physical Attack
8.​ Human psychological manipulation? → #9 Social Engineering
9.​ Third-party integrated component compromise? → #10 Supply Chain Attack

If two clusters seem to apply to the same atomic action, refine the action description until
only one applies. If ambiguity persists after refinement, document as a candidate edge case
for framework review.

Limitations and When to Refine

●​ Technique Granularity: The top-level clusters are not a technique catalog. For
detailed detection/response, use sub-threat refinements beneath the assigned cluster.

●​ Sector-Specific Phenomena: Specialized environments (OT, medical devices) may
warrant domain-specific refinements without changing top-level mappings.

●​ Legal/Compliance Overlays: Data protection and regulatory classifications run
orthogonal to threat mapping; apply both views in parallel.

●​ Emerging Attack Vectors: New technologies may reveal edge cases requiring
clarification of existing clusters rather than new categories.

Summary

The framework achieves strategic simplicity through ten mutually exclusive clusters while
enabling operational precision through:

●​ Clear decision rules for classification
●​ Explicit handling of acquisition vs. use
●​ Causal sequence notation for complex attacks
●​ Falsifiable mapping criteria

This is not oversimplification but rather strategic abstraction: complexity emerges from the
combinations and sequences of simple, well-defined elements. The framework's strength

138

lies not in exhaustive categorization but in providing a stable, logical foundation for
understanding how attacks actually unfold—from initial vulnerability exploitation through
to system compromise.

Precision comes from the rules and their consistent application, not from adding more
categories.

139

I. Example Control Matrix with KRI, KCI and KPI

Table #2 Exploiting Server (not complete - it’s a PoC here)

Threat Cluster NIST
Function

Local Controls Umbrella
Controls

Control
Objectives

KRIs​
(Baseline)

KCIs​
(Baseline)

KPIs​
(Baseline)

#2 Exploiting
Server

Identify Vulnerability
scanning, code
analysis

CVE
monitoring,
threat
intelligence

Identify and
mitigate server
vulnerabilities

Number of new
critical server
vulnerabilities
discovered in the
last 24 hours

Percentage of CVE
alerts processed
within 24 hours,
frequency of
vulnerability scans,
number of active
vulnerability scans

Mean Time to
Assess New
Vulnerabilities
(MTTV) -
should have low
value, Speed of
control
implementation,
Percentage of
servers tested per
timeframe

 Protect Secure coding,
input validation

WAF
implementation,
network
segmentation

Prevent
exploitation of
server
vulnerabilities

Number of
unpatched
critical server
vulnerabilities
over 7 days.
Number of
successful web
application
exploit attempts

Number of WAF
rules in place and
configured
correctly,
frequency of
penetration tests.
WAF rule update
cycle

Mean time to
patch critical
vulnerabilities
within 24 hours,
Reduction of
successful web
application
exploit attempts

140

Threat Cluster NIST
Function

Local Controls Umbrella
Controls

Control
Objectives

KRIs​
(Baseline)

KCIs​
(Baseline)

KPIs​
(Baseline)

(compared to
baseline)

 Detect Application
logging

SIEM
integration

Detect and
respond to exploit
attempts

Number of
detected exploit
attempts against
web server per
day

Effectiveness of
application
logging tools,
SIEM detection
success rate

Mean time to
detect (MTTD),
speed of control
implementation,
detection rate for
suspicious
behavior

 Respond Emergency
patching

Incident
response plan

Respond to and
mitigate exploit
incidents

Number of
identified,
ongoing, exploit
incidents

Incident response
plan activation
rate, emergency
patching success
rate, MTTR of
incidents within 4
hours

Mean time to
respond
(MTTR)

 Recover System restore
procedures

IT SCM Recover from
exploit incidents

Number of
ongoing exploit
incidents with
no solution

System restore
procedure success
rate, backup
frequency

Mean Time to
recover
(MTTR), time
to achieve fully
operational
status again,
successful system
restoration rate

141

Table #6 Flooding Attack (not complete - it’s a PoC here)

Threat Cluster NIST
Function

Local Controls Umbrella
Controls

Control Objectives KRIs
(Baseline)

KCIs​
(Baseline)

KPIs​
(Baseline)

#6 Flooding
Attack

Identify Resource
monitoring,
capacity
planning,
baseline analysis,
DDoS
simulation

Traffic baseline
simulation

Identify and
mitigate flooding
attack risks

Number of
DDoS attack
signatures not
updated with in
24 hours,
Number of
identified blind
spots.

Frequency of
network
performance
baseline
analysis,
frequency of
DDoS
simulations.
Percentage of
simulation
scenarios
implemented
correctly

Number of
DDoS attacks
detected per
day, time to
assess new
threats and
vulnerabilities,
speed of control
implementation
.

 Protect Rate limiting,
Akamai,
Cloudflare,
upstream
filtering,
connection
throttling

Cloudflare/
Akamai
upstream
filtering

Prevent flooding
attacks

Number of
successful
flooding attacks,
number of
unprotected
routes, number
of missing
controls against
DDoS attacks

Percentage of
DDoS attack
mitigations in
place,
Frequency of
manual checks,
Success rate of
automated
network
throttling,
Connection

Percentage of
blocked DDoS
traffic.
Reduction of
successful
flooding attacks
compared to
baseline

142

Threat Cluster NIST
Function

Local Controls Umbrella
Controls

Control Objectives KRIs
(Baseline)

KCIs​
(Baseline)

KPIs​
(Baseline)

throttling rule
configuration

 Detect Network flow
monitoring,
analysis,
threshold alerts,
anomaly
detection

Network flow
analysis

Detect and respond
to flooding attacks

Number of
detected
suspicious
network traffic
events per hour,
Number of
ongoing attacks
against systems

Percentage of
anomaly
detection rules
implemented,
frequency of
monitoring of
anomaly
detection,
number of
false positives.
Number of
alerts detected
per timeframe.

Speed of control
implementation
, Mean Time To
Detect
(MTTD),
number of
detected attacks
that were not
recognized by
our rules

 Respond Traffic
blacklisting,
mitigation
graceful service
degradation,
DDoS activation

DDoS
activation

Respond to and
mitigate flooding
attacks

Number of
identified
ongoing DDoS
attacks, Number
of compromised
systems

Incident
response plan
activation rate,
graceful service
degradation
success rate,
percentage of
active
mitigations

Time to
respond
(MTTR),
incident
resolution
success rate
within defined
time frame

143

Threat Cluster NIST
Function

Local Controls Umbrella
Controls

Control Objectives KRIs
(Baseline)

KCIs​
(Baseline)

KPIs​
(Baseline)

working
correctly

 Recover Service
restoration
procedures,
post-incident
scaling
adjustments

Post-incident
scaling
adjustments

Recover from
flooding attacks

Time to recover
from an
incident,
Number of
systems down
during attack,
number of
affected
customers

System restore
procedure
success rate,
post-incident
scaling
effectiveness

post-incident
system
restoration
time, number of
customers
affected and
time to return
to full service,
successful
recovery rate
within 4 hours

144

K. Physical Layer Analysis in the TLCTC Framework

This section extends the application of the Top Level Cyber Threat Cluster (TLCTC)
framework to the often-overlooked physical layer (#8.2), demonstrating its broader
applicability beyond traditional IT systems. We will use the client-server model to analyze
both signal transmission and sensor systems.

Signal Transmission Model

Components and Roles

Receiver (Acting as Server): In a sense, this component acts as a "server" by waiting for and
processing incoming signals. It functions as the recipient in the client-server model. It is
vulnerable to Physical Attack (#8) through signal manipulation and can also be exploited
through server-side software vulnerabilities (#2).

Transmitter (Signal Source): This component sends signals to the receiver. It isn't
vulnerable to Exploiting Client (#3) attacks, but it can be a subject of Physical Attack (#8).

Sensor Systems Model

Components and Roles

Sensor (Acting as Server): In a sense, this component acts as a "server" by waiting to receive
and process environmental inputs, using a receiver component. It is vulnerable to multiple
threat clusters, including #2 and #8. It processes information from various environmental
sources.

Environmental Objects (Signal Sources): These objects act as transmitters of
information/signals, similar to transmitters in the signal transmission model. They are not
vulnerable to Exploiting Client (#3).

Applicable Threat Clusters

For Both Models

Physical Attack (#8): Encompasses direct interference with hardware, physical access, signal
jamming, and other forms of physical manipulation. E.g., Cutting cables, installing devices.

145

Exploiting Server (#2): Targets vulnerabilities in signal or input processing software. For
example, buffer overflows in processing the received signals.

Abuse of Functions (#1): Involves misusing designed transmission or sensing capabilities.
For example, transmitting or receiving signals with specific manipulation.

Man in the Middle (#5): Targets interference with signal transmission and/or manipulation
of sensor readings, for example an evil twin attack on a WiFi sensor.

Flooding Attack (#6): This can refer to signal jamming or overwhelming receivers/sensors
with an excessive amount of input.

Key Insights

Client-Server Axiom Application: Demonstrates that the client-server model applies not
only to software systems but also to different types of physical layer interactions.

Generic Vulnerability Principle: Highlights that each threat cluster targets a distinct generic
vulnerability, ensuring clear separation between different attack vectors, also at the physical
layer.

Framework Consistency: Demonstrates the framework’s versatility across different IT
system types by showing consistent threat categorization at the physical layer.

Implications for Security

Defense Planning: Needs comprehensive physical layer security, considering multiple threat
vectors, integrated with the overall security architecture.

Risk Assessment: Allows for a clear categorization of physical layer threats, a better
understanding of their attack vectors, and precise risk evaluation.

146

L. Integrating Programmable Logic Controller (PLC)
Architectures within the TLCTC Framework

This chapter extends the application of the Top Level Cyber Threat Cluster (TLCTC)
framework to Programmable Logic Controllers (PLCs), critical components in Operational
Technology (OT) environments. This expansion underscores the framework’s versatility
beyond traditional Information Technology (IT) systems, highlighting its ability to provide
a consistent approach to threat categorization across diverse operational domains. PLCs
directly control physical processes, making their security crucial.

PLC Architecture and the Client-Server Model

PLCs, while often perceived as specialized industrial devices, can be analyzed within the
client-server interaction model that forms a core principle of the TLCTC framework. This
is a logical and conceptual view to adhere to the axiom.

●​ PLC as a Server: The PLC acts as a "server" by processing inputs from sensors and
executing control logic. It "serves" by processing instructions and sending signals.

●​ Actuators/Sensors as Clients: Actuators, sensors, and other field devices act as
"clients" that send data and receive instructions from the PLC.

This fundamental client-server relationship provides a basis for identifying relevant
vulnerabilities and associated threat clusters.

Mapping PLC Vulnerabilities to TLCTC Threat Clusters

PLC vulnerabilities and attack vectors can be classified under the following TLCTC threat
clusters:

●​ Physical Attack (#8): PLCs are frequently located in physically accessible industrial
settings, making them susceptible to:

○​ Direct tampering with hardware, including manipulating components,
firmware, or wiring.

○​ Replacement of PLC devices with compromised alternatives.
○​ Physical intrusion to gain unauthorized access to PLC hardware.

●​ Exploiting Server (#2): PLCs often run specialized firmware or software that may
contain exploitable flaws that enable:

○​ Remote code execution via network interfaces.

147

○​ Manipulation of PLC firmware/software by exploiting vulnerabilities.
○​ Unauthorized access to control logic.

●​ Abuse of Functions (#1): Attackers may misuse intended PLC functionality to
manipulate operational processes, such as:

○​ Modifying parameters of control loops or setpoints that results in unsafe
process behaviours.

○​ Disabling safety mechanisms.
○​ Abusing legitimate programming interfaces or protocols.
○​ Abusing software libraries, for example, DLL injection (which is a "function"

if intended by design).
●​ Man in the Middle (#5): Communications between PLCs and other devices often

lack strong security measures making them vulnerable to:
○​ Interception of PLC protocols to view and modify control commands.
○​ Injection of malicious data into control loops.
○​ Unauthorized changes to parameters on a network level.

●​ Flooding Attack (#6): PLCs, particularly those in high speed automation loops, can
be targeted through attacks that disrupt availability by:

○​ Overwhelming the PLC’s processing capabilities via a high frequency of
requests.

○​ Saturating network communication channels to render the PLC
unreachable.

●​ Supply Chain Attack (#10): PLCs and their components are often produced by
third parties and could be compromized at:

○​ Compromised firmware pre-installed on PLCs by manufacturers.
○​ Compromised components in PLCs during manufacturing.
○​ Compromised development tools used for PLC configuration and

programming.

PLC Specific Key Insights within the TLCTC Framework

●​ Application of Client-Server Axiom: The client-server interaction model extends
from traditional software systems down to the fundamental communication
between PLCs and other devices in the physical domain.

●​ Generic Vulnerability Principle: Each TLCTC threat cluster highlights distinct root
causes for vulnerabilities that apply to both the software and physical aspects of
PLC architectures.

148

●​ Framework Consistency: The TLCTC framework provides consistent threat
categorization across IT and OT infrastructures, enhancing interoperability
between risk assessments.

Implications for Security within PLC Architectures

●​ Defense Planning: PLCs require comprehensive security strategies that span both
physical and cyber domains. Defense-in-depth strategies should include measures
like physical access controls, network segmentation, secure communication
protocols, secure coding practices, regular firmware updates, and configuration
management, while adhering to the axioms.

●​ Risk Assessment: The TLCTC framework provides a means to categorize threats
related to PLC architectures, improving the quality of risk assessment, and enabling
informed decisions for prioritization and mitigation, following the framework's
approach to defining a cyber threat as an event on the "cause-side." It’s also
important to note that a vulnerability in a PLC at the lowest level can create a chain
reaction that extends through all layers in the vertical attack path. This chain
reaction can extend up to the application layer.

Actionable Steps:

PLC Threat Modeling: Use the TLCTC framework to model potential threats against
PLC architectures by considering each of the 10 Threat Clusters.

Vulnerability Mapping: Map PLC vulnerabilities (e.g. CVEs) to the correct generic
vulnerability in the framework for easier and better understanding.

Control Matrix: Integrate PLC-specific controls into the control matrix following the
NIST functions (Identify, Protect, Detect, Respond, Recover), to ensure a comprehensive
strategy.

Conclusion

This chapter has shown that the TLCTC framework provides a consistent method for
organizing, categorizing, and analysing cyber threats across diverse IT system types and has
introduced Programmable Logic Controllers (PLCs) into the scope. This extension
demonstrates the framework’s broad applicability for all cyber security issues, including
those from the OT world. The explicit inclusion of PLC architectures emphasizes the

149

practical relevance of the framework and contributes to a more comprehensive approach to
cyber risk management across an entire infrastructure.

150

M. Enhancing CVE Details with TLCTC

This section proposes an extension to traditional CVE records by integrating the TLCTC
framework. The goal is to provide a strategic layer for attack vector representation that
bridges technical vulnerability data and higher-level risk management. By mapping
vulnerabilities to TLCTC threat clusters and representing potential attack paths,
organizations gain clearer insight into exploitation scenarios and can better align controls
with risk management frameworks such as the NIST CSF.

Key Enhancements

●​ Attack Vector Representation: CVE records are annotated with an “Initial Access”
indicator and mapped to primary TLCTC clusters, clarifying ambiguous
descriptions like “allows Remote Code Execution (RCE)” by specifying whether it
results from Malware (#7) or Abuse of Functions (#1).

●​ Mapping to Threat Clusters: Vulnerabilities are directly linked to a primary threat
cluster (e.g., #3 Exploiting Client) with potential follow-up clusters provided. This
includes identifying possible preceding clusters (such as Identity Theft or Social
Engineering) that might be needed for an attack to progress.

●​ Integration with Control Frameworks: Extended CVE records include mappings to
NIST CSF functions (Identify, Protect, Detect, Respond, Recover), facilitating
seamless integration with existing cybersecurity control management processes.

●​ Enhanced Contextualization: Additional fields represent potential attack paths
using standardized notation (e.g., "#9 -> #2 -> (#7 or #1)"), offering a comprehensive
view of how vulnerabilities might be exploited within a broader threat sequence.

151

Proposed Extended CVE Structure

Below is an example of an extended CVE record in JSON format that integrates TLCTC
elements as a supplemental section. This extension maintains all standard CVE fields while
adding strategic details in an “extended_details” section.
 {
 "CVE_data_meta": {
 "ID": "CVE-2025-21333",
 "ASSIGNER": "secure@microsoft.com"
 },
 "description": {
 "description_data": [
 {
 "lang": "en",
 "value": "Windows Hyper-V NT Kernel Integration VSP Elevation of Privilege Vulnerability"
 }
]
 },
 "impact": {
 "baseMetricV3": {
 "cvssV3": {
 "version": "3.1",
 "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
 "attackVector": "LOCAL",
 "attackComplexity": "LOW",
 "privilegesRequired": "LOW",
 "userInteraction": "NONE",
 "scope": "UNCHANGED",
 "confidentialityImpact": "HIGH",
 "integrityImpact": "HIGH",
 "availabilityImpact": "HIGH",
 "baseScore": 7.8,
 "baseSeverity": "HIGH"
 }
 }
 },
 "extended_details": {
 "tlctc_mapping": {
 "primary_cluster": {
 "id": "#3",
 "name": "Exploiting Client",
 "justification": "The vulnerability originates from the client-side VSP’s mismanagement of
memory during its interaction with the NT Kernel."
 },
 "followup_clusters": [
 {
 "id": "#7",
 "name": "Malware",
 "justification": "Post-exploitation, malware may be deployed for persistence, lateral movement,
or data exfiltration."
 },
 {
 "id": "#1",
 "name": "Abuse of Functions",
 "justification": "With elevated privileges, attackers might abuse legitimate system functions to
further compromise the environment."

152

 }
],
 "attack_path_representation": "Preceding Clusters (potential): #4, #7, #9, #3 → Primary: #3 →
Follow-up: #7, #1",
 "potential_preceding_clusters": [
 {
 "id": "#4",
 "name": "Identity Theft",
 "rationale": "Credential theft may be necessary for an attacker to gain local access to the
Hyper-V host."
 },
 {
 "id": "#7",
 "name": "Malware",
 "rationale": "Prior malware infection might establish the conditions needed for the vulnerability
to be exploited."
 },
 {
 "id": "#9",
 "name": "Social Engineering",
 "rationale": "Phishing or other social engineering tactics could provide the initial access
required."
 },
 {
 "id": "#3",
 "name": "Exploiting Client",
 "rationale": "An alternate client-side exploit may serve as an initial step before targeting the
Hyper-V VSP vulnerability."
 }
]
 },
 "nist_csf_mapping": {
 "identify": "Vulnerability scanning and threat intelligence to detect mismanaged memory issues.",
 "protect": "Implement secure coding practices and robust memory lifecycle controls.",
 "detect": "Use SIEM and anomaly detection to monitor for unexpected memory access patterns.",
 "respond": "Activate incident response procedures to mitigate exploitation attempts.",
 "recover": "Restore system integrity via patch management and system recovery processes."
 },
 "vertical_stack_analysis": {
 "server": "NT Kernel (Ring 0)",
 "client": "Virtualization Service Provider (VSP)"
 },
 "exploit_path": "Exploitation occurs via a use-after-free condition in the VSP during its interaction
with the NT Kernel, leading to privilege escalation.",
 "initial_access": "no",
 "prerequisites": "Requires prior local access to interact with the VSP component."
 }
 }

Benefits and Impact

●​ Eliminates Ambiguity: Clearly maps vulnerabilities to specific TLCTC threat
clusters, clarifying ambiguous technical descriptions.

●​ Provides Attack Path Insight: Represents potential attack sequences and
interdependencies between threat clusters.

153

●​ Enhances Control Alignment: Links CVE data to NIST CSF functions,
streamlining integration into existing risk management frameworks.

●​ Bridges Technical and Strategic Views: Transforms static vulnerability records into
dynamic, actionable threat intelligence.

By integrating TLCTC into CVE records, organizations can achieve more comprehensive
risk assessments and implement more effective cybersecurity controls.

154

N. CVE Analysis Example

Original CVE description from the website:​

CVE-2025-21333 Detail
Description
Windows Hyper-V NT Kernel Integration VSP Elevation of Privilege Vulnerability

Metrics  
CVSS Version 4.0
CVSS Version 3.x
CVSS Version 2.0
NVD enrichment efforts reference publicly available information to associate vector strings.
CVSS information contributed by other sources is also displayed.
CVSS 3.x Severity and Vector Strings:
CNA: Microsoft Corporation
Base Score: 7.8 HIGH
Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
References to Advisories, Solutions, and Tools
By selecting these links, you will be leaving NIST webspace. We have provided these links to
other web sites because they may have information that would be of interest to you. No
inferences should be drawn on account of other sites being referenced, or not, from this page.
There may be other web sites that are more appropriate for your purpose. NIST does not
necessarily endorse the views expressed, or concur with the facts presented on these sites.
Further, NIST does not endorse any commercial products that may be mentioned on these
sites. Please address comments about this page to nvd@nist.gov.

Hyperlink Resource
https://msrc.microsoft.com/update-guide/vulnerabili
ty/CVE-2025-21333

Patch Vendor Advisory

This CVE is in CISA's Known Exploited Vulnerabilities Catalog
Reference CISA's BOD 22-01 and Known Exploited Vulnerabilities Catalog for further
guidance and requirements.

Vulnerability Name
Date
Added Due Date Required Action

Microsoft Windows Hyper-V
NT Kernel Integration VSP

01/14/2025 02/04/2025 Apply mitigations per vendor
instructions or discontinue

155

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2025-21333&vector=AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H&version=3.1&source=Microsoft%20Corporation
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-21333
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-21333
https://www.cisa.gov/binding-operational-directive-22-01
https://cisa.gov/known-exploited-vulnerabilities-catalog

Heap-based Buffer Overflow
Vulnerability

use of the product if
mitigations are unavailable.

Weakness Enumeration

CWE-ID CWE Name Source
NVD-CWE-noinfo Insufficient Information NIST  

CWE-122 Heap-based Buffer
Overflow

Microsoft
Corporation  

Now you see a output of a custom GPT (OpenAI) i have made:​
CVE Analysis Report

CVE-ID: CVE-2025-21333​
Product: Windows Hyper-V NT Kernel Integration VSP​
Vendor: Microsoft​
TLCTC: #3 Exploiting Client​
Vector String: AV:L/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H​
Score: 7.8​
Initial Vector: No​
Prerequisites: Exploitation requires local access to the Hyper-V host and precise timing to
trigger a use-after-free condition.​
Interaction Context:​
Vertical Stack Analysis:

●​ The VSP (Virtualization Stack Provider, Ring 3) acts as the client.
●​ The NT Kernel (Ring 0) serves as the server.
●​ The vulnerability originates in the VSP's flawed memory handling during

interaction with the kernel. This occurs in the client’s processing of freed memory,
leading to undefined behavior that could result in privilege escalation.

Justification:​
The vulnerability arises due to improper memory management by the VSP component of
Hyper-V when interacting with the NT Kernel. Specifically, the VSP accesses memory that
has already been freed, resulting in a use-after-free (CWE-416) flaw. This aligns with the #3
Exploiting Client threat cluster, as the root cause is a client-side failure in handling

156

http://cwe.mitre.org/data/definitions/122.html

server-provided resources. While the outcome involves privilege escalation, the initial
vulnerability is located in the client-side logic.

Try yourself here:
https://chatgpt.com/g/g-6787dfcaf2648191b907113d5b3ad8e0-cve-2-tlctc-mapper-v1-1

157

O. Integrating FAIR with the TLCTC Framework

This section details how the TLCTC (Top Level Cyber Threat Clusters) framework can
enhance the FAIR (Factor Analysis of Information Risk) methodology. While FAIR excels
in quantitative risk analysis, it lacks a structured approach to threat categorization and
modeling of complex, multi-stage attack sequences. TLCTC adds a strategic overlay by
precisely categorizing threats and representing attack paths.

Key Enhancements to FAIR Using TLCTC

●​ Sequence Complexity Factor (SCF): Adjusts base risk calculations by accounting
for the length and complexity of an attack sequence, including parallel threat
execution.

●​ Compound Threat Multipliers (CTM): Models the synergy effects when
multiple threat clusters are executed simultaneously, enhancing probability
calculations for complex attacks.

●​ Path Variance Analysis (PVA): Evaluates multiple potential attack paths by
weighting alternative sequences, leading to a more accurate overall risk assessment.

●​ Control Effectiveness Matrices (CEM): Maps the effectiveness of controls across
various threat clusters, taking into account the sequence position of each control
within an attack path.

Implementation Framework

●​ Threat Modeling Phase: Use TLCTC to identify relevant threat clusters, map
potential attack sequences (including any parallel executions), and document
corresponding control mappings.

●​ Risk Analysis Phase: Enhance FAIR's base risk calculations by applying SCF to
capture sequence complexity, CTM for parallel threats, and PVA for alternative
attack paths.

●​ Risk Reporting Phase: Document primary attack sequences, map controls to
specific threat clusters, calculate enhanced risk scores, and prioritize mitigation
strategies accordingly.

158

Practical Example

Consider an Emotet attack sequence represented as #9 → #7 → #7 → #4 → (#1 + #7).
The enhanced FAIR analysis would proceed as follows:

●​ SCF: Increases the base risk to reflect the 5-step attack sequence.
●​ CTM: Applies a multiplier for the parallel execution seen in (#1 + #7).
●​ PVA: Evaluates alternative attack paths to account for path variance.
●​ CEM: Assesses the effectiveness of deployed controls across the sequence.

The final enhanced FAIR risk score can be calculated as:​
 Enhanced_FAIR_Risk = Base_FAIR_Risk * SCF * CTM * PVA * (1 - CEM)

Benefits and Impact

●​ More Accurate Risk Quantification: By accounting for attack sequence
complexity and parallel threat execution, the enhanced model offers a more precise
risk estimation.

●​ Improved Control Evaluation: Mapping controls directly to specific threat
clusters allows for better assessment and improvement of defense measures.

●​ Enhanced Communication: Standardized TLCTC notation for attack sequences
facilitates clearer communication among stakeholders.

●​ Better Resource Allocation: More precise risk prioritization leads to informed
investment decisions in cybersecurity controls.

By integrating TLCTC with FAIR, organizations can develop a comprehensive risk analysis
framework that captures both the quantitative and qualitative dimensions of cybersecurity
threats, leading to more effective mitigation strategies and improved overall risk
management.

159

P. TLCTC Practical Application Guidelines

Introduction

While the TLCTC framework provides clear theoretical foundations through its axioms
and definitions, practitioners often need specific guidance for consistent threat classification
in real-world scenarios. These guidelines build upon the framework's core principles to
ensure accurate and consistent threat mapping across organizations.

Core Classification Principles

When categorizing threats, always begin with these fundamental questions:

●​ What is the generic vulnerability being exploited?
●​ Where does the initial exploitation occur (client or server)?
●​ Is this an exploitation of a code flaw or abuse of intended functionality?
●​ What is the earliest point in the attack sequence?

Cluster-Specific Mapping Guidelines (used for AI system prompt engineering for
CVE to TLCTC mapping agent)

#1 Abuse of Functions

Map to this cluster when the threat involves:

●​ Misuse of legitimate features within their designed scope
●​ Exploitation of configuration issues rather than code flaws
●​ Design weaknesses in functionality (not implementation flaws)
●​ Authorization bypass through misconfiguration or feature misuse

#2 Exploiting Server

Map to this cluster when the threat involves:

●​ Server-side code implementation flaws
●​ Vulnerabilities in server request processing
●​ Authorization bypass through server-side code flaws
●​ Any vulnerability where the server's processing of requests is flawed

160

#3 Exploiting Client

Map to this cluster when the threat involves:

●​ Client-side code implementation flaws
●​ Vulnerabilities in client-side processing of responses
●​ Client application flaws (browsers, document readers, etc.)
●​ Any vulnerability where the client's processing of data is flawed

#4 Identity Theft

Map to this cluster when the threat involves:

●​ Direct compromise of authentication credentials
●​ Weaknesses in credential management
●​ Authentication bypass that directly exposes credentials
●​ Note: Authorization bypass without credential compromise maps to #1 or #2

#5 Man in the Middle

Map to this cluster when the threat involves:

●​ Vulnerabilities in communication path control
●​ Protocol-level vulnerabilities enabling interception
●​ Communication flow manipulation opportunities

#6 Flooding Attack

Map to this cluster when the threat involves:

●​ Resource capacity limitations
●​ Vulnerabilities enabling resource exhaustion
●​ Denial of service through overwhelming legitimate channels

#7 Malware

Map to this cluster when the threat involves:

●​ Opportunities for foreign code execution
●​ Note: This differs from exploit code targeting specific vulnerabilities

161

#8 Physical Attack

Map to this cluster when the threat involves:

●​ Physical accessibility vulnerabilities
●​ Hardware-level vulnerabilities
●​ OSI Layer 1 (Physical Layer) vulnerabilities

#9 Social Engineering

Special considerations:

●​ Never map technical vulnerabilities (e.g., CVEs) to this cluster
●​ Reserved for human-focused deception and manipulation
●​ Often initiates attack sequences leading to other clusters

#10 Supply Chain Attack

Map to this cluster when the threat involves:

●​ Vulnerabilities in third-party components or services
●​ Update mechanism compromises
●​ Note: Direct vulnerabilities in your own systems map to #1-#8

Common Classification Challenges

Authorization vs Authentication Issues

Authentication bypass:

●​ Maps to #4 when credentials are directly compromised
●​ Maps to #2 when resulting from server-side flaws
●​ Maps to #1 when resulting from misconfiguration

Process Injection Scenarios

Process injection classification depends on the method:

●​ Maps to #1 when using designed features (e.g., debugging APIs)
●​ Maps to #2/#3 when exploiting code flaws

162

Attack Path Notation

When documenting attack sequences:

●​ Use cluster numbers with arrows (e.g., #9->#3->#7)
●​ Indicate parallel execution with plus signs (#1+#7)
●​ Document all clusters in the sequence, including initial and subsequent vectors

Conclusion

These guidelines provide practical assistance in applying the TLCTC framework while
maintaining its logical consistency and theoretical foundations. When in doubt, always
return to the fundamental question: "Which generic vulnerability is being exploited?"

163

Q. Integrating NIST NICE Tasks with the TLCTC
Framework

The Workforce-Threat Integration Challenge

Organizations face a significant challenge in aligning cybersecurity workforce capabilities
with the actual threats they need to address. The NIST National Initiative for
Cybersecurity Education (NICE) Framework provides a comprehensive taxonomy of
cybersecurity tasks, but its structure does not explicitly connect these tasks to the threat
landscape. This disconnect can lead to:

●​ Workforce development that doesn't address critical threat vectors
●​ Difficulty in prioritizing training and skill development
●​ Unclear relationships between job functions and security outcomes
●​ Challenges in mapping workforce capabilities to risk management

The Top Level Cyber Threat Clusters (TLCTC) framework offers a solution to this
challenge by providing a consistent, cause-oriented categorization of threats that can serve
as an organizing principle for workforce tasks and capabilities.

Integration Framework

The proposed integration leverages the TLCTC framework's structure to organize NICE
tasks according to:

1.​ The 10 Top Level Cyber Threat Clusters: Each representing a distinct attack
vector based on a generic vulnerability

2.​ The five NIST CSF functions: Providing a structured approach for each threat
cluster

3.​ The GOVERN function: Addressing strategic oversight across all clusters

This creates a comprehensive matrix where each NICE task can be mapped to:

●​ The specific threat cluster(s) it addresses
●​ The control function it supports (IDENTIFY, PROTECT, DETECT, RESPOND,

RECOVER)
●​ Its position in the threat management lifecycle

164

Structural Benefits

This integration delivers several key advantages:

●​ Cause-Oriented Organization: Tasks are grouped based on the fundamental
vulnerabilities they address

●​ Clear Security Outcomes: Each task is directly linked to specific control objectives
●​ Strategic-Operational Alignment: Strategic governance tasks are connected to

operational activities
●​ Comprehensive Coverage: Ensures all aspects of the threat landscape are addressed

by appropriate workforce capabilities
●​ Attack Sequence Awareness: Tasks can be further categorized based on their

relevance to different stages of attack paths

Implementation Methodology

Step 1: Threat Cluster Mapping

Each NICE task is evaluated to determine which threat cluster(s) it primarily addresses. For
example:

●​ Tasks related to secure coding would map to #2 (Exploiting Server) and #3
(Exploiting Client)

●​ Tasks focused on identity management would map to #4 (Identity Theft)
●​ Tasks concerning social engineering awareness would map to #9 (Social

Engineering)

Step 2: Control Function Alignment

Within each threat cluster, tasks are further categorized according to the NIST function
they support:

●​ IDENTIFY: Tasks focused on understanding the threat landscape, discovering
vulnerabilities

●​ PROTECT: Tasks aimed at implementing security controls to prevent compromise
●​ DETECT: Tasks related to monitoring and detecting potential threats
●​ RESPOND: Tasks involved in addressing and mitigating active threats
●​ RECOVER: Tasks focused on restoration and improvement following incidents

165

Step 3: Strategic-Operational Integration

The GOVERN function encompasses strategic tasks that apply across all threat clusters,
including:

●​ Risk management and assessment
●​ Policy development and implementation
●​ Compliance monitoring and reporting
●​ Program management and oversight
●​ Workforce development and management

Examples of NICE Task Integration with TLCTC

Example 1: Mapping #2 Exploiting Server

Threat Cluster Definition: An attacker targets vulnerabilities in server-side software to
manipulate server behavior using exploit code.

Generic Vulnerability: The presence of exploitable flaws in server-side software code.

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

IDENTIFY T0028 Conduct software assessments to ensure
compliance with security requirements
and policies

Identify weaknesses
enabling server
exploitation

IDENTIFY T0160 Perform secure code reviews Identify weaknesses
enabling server
exploitation

IDENTIFY T0013 Assess the effectiveness of security
controls

Identify weaknesses
enabling server
exploitation

PROTECT T0176 Perform security reviews and identify
security gaps in security architecture

Protect server from
being exploited

166

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

PROTECT T0291 Implement security countermeasures to
mitigate vulnerabilities

Protect server from
being exploited

PROTECT T0296 Make recommendations based on
malware analysis

Protect server from
being exploited

DETECT T0259 Use cyber defense tools for continual
monitoring and analysis of system
activity

Detect exploited server

DETECT T0063 Collect intrusion artifacts and use
discovered data to enable mitigation of
potential cyber defense incidents

Detect exploited server

RESPOND T0175 Perform real-time cyber defense incident
handling tasks

Respond to exploited
server

RESPOND T0278 Respond to crisis situations within the
pertinent constraints

Respond to exploited
server

RECOVER T0332 Coordinate with intelligence analysts to
manage and deconflict intelligence
requirements

Recover from server
exploit event

RECOVER T0229 Implement specific cybersecurity
countermeasures based on work
performed

Recover from server
exploit event

Example 2: Mapping #4 Identity Theft

Threat Cluster Definition: An attacker targets weaknesses in identity and access
management to acquire and misuse legitimate credentials.

167

Generic Vulnerability: Weak Identity Management Processes and/or credential
protection mechanisms.

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

IDENTIFY T0059 Collaborate with stakeholders to identify
and/or develop appropriate identity and
access management solutions

Identify weaknesses in
identity management

IDENTIFY T0115 Identify security issues that could impact
access control implementations

Identify weaknesses in
credential
management

PROTECT T0455 Implement and enforce identity and
access management controls

Protect identity

PROTECT T0123 Install, update, and troubleshoot identity
and access management systems and
components

Protect credentials

DETECT T0261 Design and develop user activity
monitoring and insider threat capabilities

Detect identity theft

DETECT T0164 Perform content inspection to detect and
handle anomalies in content

Detect identity theft

RESPOND T0521 Respond to identity and authentication
issues

Respond to identity
theft

RESPOND T0133 Manage accounts, network rights, and
access to systems and equipment

Respond to identity
theft

RECOVER T0510 Restore domain account access for
authorized personnel

Recover identity

168

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

RECOVER T0531 Implement technical safeguards to ensure
data integrity during recovery operations

Recover identity

Example 3: Mapping #9 Social Engineering

Threat Cluster Definition: An attacker manipulates people into performing actions that
compromise the security of systems or (business-) processes.

Generic Vulnerability: The generic vulnerability in humans is their gullibility, ignorance,
or compromisability.

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

IDENTIFY T0258 Develop and conduct social
engineering tests

Identify human
vulnerabilities to social
engineering

IDENTIFY T0507 Identify security awareness issues
from social engineering exercises

Identify human
vulnerabilities to social
engineering

PROTECT T0256 Develop and deliver technical
training to educate end users

Protect against social
engineering

PROTECT T0502 Create security awareness materials Protect against social
engineering

DETECT T0301 Monitor external data sources to
maintain current security threat
information

Detect social engineering
attempts

DETECT T0166 Perform security reviews and
identify gaps in security architecture

Detect social engineering
attempts

169

NIST
Function

NICE
Task ID

NICE Task Description Control Objective

RESPOND T0152 Notify and work with organizational
incident handlers

Respond to social
engineering incidents

RESPOND T0171 Perform cyber defense incident
triage

Respond to social
engineering incidents

RECOVER T0491 Perform analysis of lessons learned
from incidents

Recover from social
engineering incidents

RECOVER T0332 Coordinate with intelligence
analysts to manage and deconflict
intelligence requirements

Recover from social
engineering incidents

Example 4: GOVERN Function Across All Threat Clusters

The GOVERN function provides strategic oversight and management across all threat
clusters:

GOVERN
Aspect

NICE
Task ID

NICE Task Description Strategic Objective

Risk Management T0165 Perform risk assessment to
determine loss potential

Establish risk appetite
across threat clusters

Policy
Development

T0149 Develop policies and procedures Create cohesive security
policies aligned with
threats

Strategic Planning T0094 Develop strategic insights about
cybersecurity implications

Align security strategy
with threat landscape

170

GOVERN
Aspect

NICE
Task ID

NICE Task Description Strategic Objective

Resource
Allocation

T0570 Determine security implications
and resource requirements for
new technologies

Allocate resources based
on threat priorities

Program
Management

T0072 Define and manage project scope Ensure security programs
address all threat clusters

Compliance T0177 Perform security compliance
reviews

Verify protection against
all threat clusters

Benefits of Integration

For Security Leadership

●​ Improved Resource Allocation: Clearer mapping between workforce capabilities
and the threat landscape enables more effective resource allocation

●​ Risk-Based Prioritization: Training and staffing can be prioritized based on the
most critical threat clusters facing the organization

●​ Strategic Alignment: Ensures strategic security initiatives directly support threat
mitigation across all relevant clusters

For Security Operations

●​ Clear Task Relevance: Staff understand exactly how their tasks contribute to
addressing specific threat vectors

●​ Comprehensive Coverage: Ensures operational activities address all aspects of the
threat landscape

●​ Structured Response: Provides a clear framework for organizing incident response
activities

For Workforce Development

●​ Targeted Skill Development: Training can be focused on the most relevant threat
clusters

171

●​ Clear Career Progression: Staff can develop expertise around specific threat
clusters or control functions

●​ Comprehensive Capability Planning: Organizations can ensure they have the
right skills to address all threat clusters

Implementation Considerations

When implementing this integration framework, organizations should consider:

1.​ Organization-Specific Tailoring: Adapt the mapping based on the organization's
specific threat landscape and risk profile

2.​ Task Multi-Classification: Some tasks may address multiple threat clusters and
should be mapped accordingly

3.​ Regular Review and Update: As the threat landscape evolves, task mappings
should be reviewed and updated

4.​ Prioritization Based on Risk: Focus initial integration efforts on the threat
clusters presenting the highest risk

Conclusion

Integrating NIST NICE tasks with the TLCTC framework creates a powerful structure for
aligning workforce capabilities with the actual threats organizations face. This approach
transforms cybersecurity workforce management from a role-based exercise to a
threat-centric discipline, ensuring that human capabilities directly address the full spectrum
of cyber threats in a structured, consistent manner.

By organizing workforce tasks according to the 10 Top Level Cyber Threat Clusters and the
NIST CSF functions, organizations can develop a more resilient security posture with clear
connections between workforce capabilities, control objectives, and the evolving threat
landscape. This integration provides a bridge between strategic risk management and
operational workforce development, ensuring that the right people with the right skills are
addressing the right threats.

172

X. Change Log

V1.7 - 2025-08-08

●​ Divided chapter H into H1 and H2 - read yourself about oversimplification
questions you may have - H2 is from GPT 5 Think Deep

V1.6.6 - 2025-08-04

●​ Added Axiom X - Credentials Paradigma

V1.6.3 - 2025-04-01

●​ Made B. and C. more pragmatic

V1.6.2 - 2025-03-29

●​ All Definitions clarified

V1.6.1 - 2025-03-16

●​ Redacted Chapter “Data Risk Event Types”

V1.6 - 2025-03-09

●​ Added Chapter Q: NIST NICE Tasks Integration

V1.5.9 - 2025-02-21

●​ Added analysis of CRF-TT to Chapter G

V1.5.8 - 2025-02-19

●​ Added Chapter P: “TLCTC Practical Application Guidelines” based on system
prompt engineering results for an agent based CVE to TLCTC mapper

V1.5.7 - 2025-02-13

●​ Added new chapter M: “Enhancing CVE Details”. Moved old M->N
●​ Added new Chapter O: “Integrating FAIR"

V1.5.5 - 2025-01-29

●​ Redacted MITRE and STIX jsons

173

V1.5.4 - 2025-01-23

●​ Added Chapter M “Example CVE Analysis”
●​ Added “MFA Bombing” in Chapter F

V1.5.3 - 2025-01-15

●​ Refined Vertical Attack Path and added Hypothetical Examples

V1.5.2 - 2025-01-11

●​ Added Chapter “K: Physical Layer Analysis in the TLCTC Framework”
●​ Added Chapter “L: Integrating Programmable Logic Controller (PLC)

Architectures within the TLCTC Framework”
●​ Added Section about “Current State of FAIR” and “ETSI”

V1.5.1 - 2025-01-08

●​ Added Sub Chapter “Hierarchical Framework for Key Indicators”

V1.5 - 2025-01-03

●​ Reformatted the White Paper and changed order of the Chapters
●​ Added KRI, KCI and KPI definitions and examples
●​ Assed Consideration about “Umbrella Controls”

v1.4 - 2024-12-24

●​ Added a new guiding principle: **Axiom: Each distinct attack vector is defined by
the generic vulnerability it initially targets.**

v1.3 - 2024-12-19

●​ Added Chapter "Why ten?" Added Chapter "Oversimplification?"
●​ Added a new clarification regarding the term "process injection"

v1.2 - 2024-12-08

●​ Added clarification on 3rd Party Cyber Risk Management vs Supply Chain Attack
(#10)

●​ Added new chapter on Secure Software Development Life Cycle (SSDLC)
integration

●​ Added new chapter on Secure Coding Practices

174

v1.1 - 2024-11-24

●​ Added new chapter about vertical attack paths
●​ Added executive summary

v1.0 - 2024-09-01 first official release

●​ Added practical application examples and use cases
●​ Enhanced framework explanation for better comprehension
●​ Refined semantic consistency in threat definitions
●​ Added integration examples with existing frameworks
●​ Prototype Development - December 2022 Initial concept development during

holiday period
○​ Established core thought experiment methodology
○​ Defined foundational axioms
○​ Developed initial generic vulnerability mapping
○​ Created semantically consistent threat cluster definitions
○​ Challenged conventional terminology (e.g., DDOS, Drive By) to maintain

logical consistency

175

Z: References

[1] National Institute of Standards and Technology, “The NIST Cybersecurity Framework
(CSF) 2.0,” NIST CSWP 29, Feb. 26, 2024. [Online]. Accessed: Aug. 9, 2025. NIST
Publications

[2] NIST, Security and Privacy Controls for Information Systems and Organizations, SP
800-53 Rev. 5, Dec. 2020. [Online]. Accessed: Aug. 9, 2025. NIST PublicationsNIST
Computer Security Resource Center

[3] NIST, Risk Management Framework (RMF): A System Life Cycle Approach for Security
and Privacy, SP 800-37 Rev. 2, Dec. 2018. [Online]. Accessed: Aug. 9, 2025. NIST
PublicationsNIST Computer Security Resource Center

[4] NIST, Guide for Conducting Risk Assessments, SP 800-30 Rev. 1, Sept. 2012. [Online].
Accessed: Aug. 9, 2025. NIST Computer Security Resource Center

[5] NIST, Managing Information Security Risk: Organization, Mission, and Information
System View, SP 800-39, Mar. 2011. [Online]. Accessed: Aug. 9, 2025. NIST Computer
Security Resource Center

[6] NIST, Information Security Continuous Monitoring (ISCM) for Federal Information
Systems and Organizations, SP 800-137, Sept. 2011. [Online]. Accessed: Aug. 9, 2025.
NIST PublicationsNIST Computer Security Resource Center

[7] NIST, Engineering Trustworthy Secure Systems, SP 800-160 Vol. 1 Rev. 1, Nov. 2022.
[Online]. Accessed: Aug. 9, 2025. NIST PublicationsNIST Computer Security Resource
Center

[8] NIST, Developing Cyber-Resilient Systems: A Systems Security Engineering Approach, SP
800-160 Vol. 2 Rev. 1, 2021. [Online]. Accessed: Aug. 9, 2025. NIST PublicationsNIST
Computer Security Resource Center

[9] NIST, Workforce Framework for Cybersecurity (NICE Framework), SP 800-181 Rev. 1,
Nov. 2020. [Online]. Accessed: Aug. 9, 2025. NIST PublicationsNIST Computer Security
Resource Center

[10] ISO/IEC 27001:2022, Information security, cybersecurity and privacy protection —
ISMS Requirements. [Online]. Accessed: Aug. 9, 2025. ISO

176

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r2.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/37/r2/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/30/r1/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/39/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/39/final?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/137/final?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v1r1.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/160/v1/r1/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/160/v1/r1/final?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2r1.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/160/v2/r1/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/160/v2/r1/final?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-181r1.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/181/r1/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/181/r1/final?utm_source=chatgpt.com
https://www.iso.org/standard/27001?utm_source=chatgpt.com

[11] ISO/IEC 27002:2022, Information security, cybersecurity and privacy protection —
Information security controls. [Online]. Accessed: Aug. 9, 2025. ISO

[12] ISO/IEC 27005:2022, Guidance on managing information security risks. [Online].
Accessed: Aug. 9, 2025. ISO

[13] MITRE, “ATT&CK® for Enterprise (Matrix & Techniques),” continuously updated.
[Online]. Accessed: Aug. 9, 2025. MITRE ATT&CK

[14] MITRE, “D3FEND™ 1.0: Cybersecurity Ontology,” Jan. 16, 2025 (release).
[Online]. Accessed: Aug. 9, 2025. MITREd3fend.mitre.org

[15] MITRE, “CAPEC: Common Attack Pattern Enumeration and Classification,” v.
current, 2007–2025. [Online]. Accessed: Aug. 9, 2025. capec.mitre.org

[16] MITRE, “CWE: Common Weakness Enumeration,” v. current, 2006–2025.
[Online]. Accessed: Aug. 9, 2025. cwe.mitre.org

[17] CVE Program, “CVE®: Common Vulnerabilities and Exposures,” program site,
1999–2025. [Online]. Accessed: Aug. 9, 2025. CVE

[18] FIRST, Common Vulnerability Scoring System (CVSS) v4.0 Specification, Nov. 2023
(latest spec PDF 2024-06-18). [Online]. Accessed: Aug. 9, 2025. first.org+1

[19] CISA, “Known Exploited Vulnerabilities (KEV) Catalog,” continuously updated.
[Online]. Accessed: Aug. 9, 2025. CISA+1

[20] OASIS, STIX™ Version 2.1, OASIS Standard, Jan. 25, 2021. [Online]. Accessed: Aug.
9, 2025. OASIS Open

[21] OASIS, TAXII™ Version 2.1, OASIS Standard, Jun. 10, 2021. [Online]. Accessed:
Aug. 9, 2025. OASIS Open

[22] IETF, RFC 9424, Indicators of Compromise (IoCs) and Their Role in Attack Defence,
Jun. 5, 2024. [Online]. Accessed: Aug. 9, 2025. IETF Datatracker

[23] ETSI, TR 103 331 V2.1.1: CYBER; Structured Threat Information Sharing, Dec.
2022. [Online]. Accessed: Aug. 9, 2025. ETSI

177

https://www.iso.org/standard/75652.html?utm_source=chatgpt.com
https://www.iso.org/standard/80585.html?utm_source=chatgpt.com
https://attack.mitre.org/matrices/enterprise/?utm_source=chatgpt.com
https://www.mitre.org/news-insights/news-release/mitre-launches-d3fend-10-milestone-cybersecurity-ontology?utm_source=chatgpt.com
https://d3fend.mitre.org/blog/d3fend-1.0/?utm_source=chatgpt.com
https://capec.mitre.org/?utm_source=chatgpt.com
https://cwe.mitre.org/?utm_source=chatgpt.com
https://www.cve.org/?utm_source=chatgpt.com
https://www.first.org/cvss/v4-0/cvss-v40-specification.pdf?utm_source=chatgpt.com
https://www.cisa.gov/known-exploited-vulnerabilities-catalog?utm_source=chatgpt.com
https://www.oasis-open.org/standard/6426/?utm_source=chatgpt.com
https://www.oasis-open.org/standard/taxii-version-2-1/?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/rfc9424/?utm_source=chatgpt.com
https://www.etsi.org/deliver/etsi_tr/103300_103399/103331/02.01.01_60/tr_103331v020101p.pdf?utm_source=chatgpt.com

[24] Center for Internet Security, CIS Critical Security Controls v8.1, Jun. 24, 2024.
[Online]. Accessed: Aug. 9, 2025. CIS

[25] OWASP, Top 10: 2021 — Top 10 Web Application Security Risks, 2021. [Online].
Accessed: Aug. 9, 2025. OWASP Foundation

[26] OWASP, API Security Top 10: 2023, 2023. [Online]. Accessed: Aug. 9, 2025. OWASP
Foundation

[27] OWASP, Application Security Verification Standard (ASVS) 4.0.3, 2023. [Online].
Accessed: Aug. 9, 2025. OWASP Foundation

[28] OWASP, Top 10 for Large Language Model (LLM) Applications, v1.1 (GenAI
Project), 2024–2025. [Online]. Accessed: Aug. 9, 2025. OWASP Foundation

[29] NIST, Secure Software Development Framework (SSDF) Version 1.1, SP 800-218, Feb.
2022. [Online]. Accessed: Aug. 9, 2025. NIST PublicationsNIST Computer Security
Resource Center

[30] Ecma International, ECMA-424 (1st ed., June 2024): CycloneDX Bill of Materials
Specification, v1.6. [Online]. Accessed: Aug. 9, 2025. Ecma International+1

[31] ISO/IEC 5962:2021, Information technology — SPDX® Specification (V2.2.1).
[Online]. Accessed: Aug. 9, 2025. ISOspdx.dev

[32] OpenSSF, “SLSA — Supply-chain Levels for Software Artifacts,” specification site
(current). [Online]. Accessed: Aug. 9, 2025. SLSA+1

[33] ENISA, ENISA Threat Landscape 2024, Sept. 2024. [Online]. Accessed: Aug. 9, 2025.
ENISA

[34] Verizon, 2025 Data Breach Investigations Report (DBIR), May 2025. [Online].
Accessed: Aug. 9, 2025. Verizon+1

[35] CrowdStrike, 2025 Global Threat Report, 2025. [Online]. Accessed: Aug. 9, 2025.
CrowdStrike

[36] Mandiant (Google Cloud), M-Trends 2025, Apr. 2025. [Online]. Accessed: Aug. 9,
2025. services.google.comGoogle Cloud

178

https://www.cisecurity.org/insights/white-papers/cis-critical-security-controls-v8-1?utm_source=chatgpt.com
https://owasp.org/Top10/?utm_source=chatgpt.com
https://owasp.org/API-Security/editions/2023/en/0x00-header/?utm_source=chatgpt.com
https://owasp.org/API-Security/editions/2023/en/0x00-header/?utm_source=chatgpt.com
https://owasp.org/www-project-application-security-verification-standard/?utm_source=chatgpt.com
https://owasp.org/www-project-top-10-for-large-language-model-applications/?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-218.pdf?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/218/final?utm_source=chatgpt.com
https://csrc.nist.gov/pubs/sp/800/218/final?utm_source=chatgpt.com
https://ecma-international.org/wp-content/uploads/ECMA-424_1st_edition_june_2024.pdf?utm_source=chatgpt.com
https://www.iso.org/standard/81870.html?utm_source=chatgpt.com
https://spdx.dev/use/specifications/?utm_source=chatgpt.com
https://slsa.dev/?utm_source=chatgpt.com
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024?utm_source=chatgpt.com
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2024?utm_source=chatgpt.com
https://www.verizon.com/business/resources/Tea/reports/2025-dbir-data-breach-investigations-report.pdf?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/global-threat-report/?utm_source=chatgpt.com
https://www.crowdstrike.com/en-us/global-threat-report/?utm_source=chatgpt.com
https://services.google.com/fh/files/misc/m-trends-2025-en.pdf?utm_source=chatgpt.com
https://cloud.google.com/security/resources/m-trends?utm_source=chatgpt.com

[37] Microsoft, Digital Defense Report 2024, Oct. 2024. [Online]. Accessed: Aug. 9, 2025.
cdn-dynmedia-1.microsoft.comMicrosoft

[38] CISA, “Emergency Directive 21-01: Mitigate SolarWinds Orion Code Compromise,”
Dec. 13, 2020. [Online]. Accessed: Aug. 9, 2025. CISA

[39] U.S. Government Accountability Office, Federal Response to SolarWinds and
Microsoft Exchange Incidents, GAO-22-104746, Jan. 2022. [Online]. Accessed: Aug. 9,
2025. Government Accountability Office+1

[40] NVD, “CVE-2021-44228 (Log4Shell),” Dec. 2021; and CISA, “Apache Log4j
Vulnerability Guidance,” Apr. 8, 2022. [Online]. Accessed: Aug. 9, 2025.
nvd.nist.govCISA

179

https://cdn-dynmedia-1.microsoft.com/is/content/microsoftcorp/microsoft/final/en-us/microsoft-brand/documents/Microsoft%20Digital%20Defense%20Report%202024%20%281%29.pdf?utm_source=chatgpt.com
https://cdn-dynmedia-1.microsoft.com/is/content/microsoftcorp/microsoft/final/en-us/microsoft-brand/documents/Microsoft%20Digital%20Defense%20Report%202024%20%281%29.pdf?utm_source=chatgpt.com
https://www.microsoft.com/en-us/security/security-insider/threat-landscape/microsoft-digital-defense-report-2024?utm_source=chatgpt.com
https://www.cisa.gov/news-events/directives/ed-21-01-mitigate-solarwinds-orion-code-compromise?utm_source=chatgpt.com
https://www.gao.gov/products/gao-22-104746?utm_source=chatgpt.com
https://nvd.nist.gov/vuln/detail/cve-2021-44228?utm_source=chatgpt.com
https://nvd.nist.gov/vuln/detail/cve-2021-44228?utm_source=chatgpt.com
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance?utm_source=chatgpt.com

	Top Level Cyber Threat Clusters
	Executive Summary
	
	Table of Contents
	Introduction
	
	Objectives
	
	Assumptions - Axioms
	Why Start With Assumptions and Axioms?
	Agreement Required
	Key Axioms and Assumptions

	The Thought Experiment
	
	Definitions
	#1 Abuse of Functions
	#2 Exploiting Server
	#3 Exploiting Client
	#4 Identity Theft
	#5 Man in the Middle (MitM)
	#6 Flooding Attack
	#7 Malware
	#8 Physical Attack
	#9 Social Engineering
	#10 Supply Chain Attack
	
	Clarifications

	
	Bridging Strategy and Operations: A Comprehensive TwoTiered Approach
	Strategic Management Layer
	Operational Layer
	
	
	Cyber Risk Events and Incidents
	Consequences
	Integration Between Layers

	The Anatomy of Risk
	Cyber Bow-Tie and Risk-Management
	Clarification on Central Event Position
	KRI, KCI and KPI
	Key Performance Indicators (KPIs):
	Key Control Indicators (KCIs):
	Key Risk Indicators (KRIs):

	Hierarchical Framework for Key Indicators

	
	
	Data Risk Event Types
	
	Sequences in Cyber Threat Clusters
	There are NO overlappings
	Sequences in Attacks: An Example View

	Concept Applicability
	At Interface Level (API)
	At Function Call Level
	Vertical Stack Application: A Layered Security Approach

	
	Standardizing Strategic Cybersecurity
	Refinement of the Top Level Clusters
	Standardizing Operational Cybersecurity
	Buzz-Word Refinement of the Top Level Clusters
	Standardized Attack Sequence Notation
	MFA Bombing and MFA Fatigue in TLCTC Attack Path Notation
	The Need for Multi-Layer Notation Convention
	Real-World Application of Dual-Layer Notation

	IT Systems, Assets, and the TLCTC Framework
	The Challenge: Moving Beyond IT System Types
	Core Principles
	Strategic vs. Operational Views
	Implementation Framework
	Conclusion

	
	A. Leveraging NIST CSF functions
	Cyber Threat Cluster Control Framework
	Application

	B. SSDLC Integration
	C. Secure Coding Practices
	Bridging the Communication Gap: From SAST Reports to Strategic Risk Communication
	The Communication Challenge
	The TLCTC Mapping Solution
	Practical Mapping Examples
	Common CWE to TLCTC Mappings
	Implementation Process
	Sample Executive Communication
	Benefits of the Reverse Mapping Approach
	
	Moving Forward

	
	Reflecting on STRIDE

	D. Threat Intelligence - Real World Examples
	NSO Group Pegasus spyware Attack Paths
	Emotet@Heise Path
	
	Cobalt Strike as a Multi-Threat Tool
	
	Attacker profiles

	E. Threat Intelligence - Analysis of MITRE & STIX
	Enhancing STIX with the Top Level Cyber Threat Clusters
	Enhancing MITRE ATT&CK

	F. Introducing Cyber Threat Radars
	The Current Challenge
	Enter the Cyber Threat Radar
	Key Benefits
	Versatile Application
	Understanding Cyber Threat Radar Visualizations

	G. Critical Analysis of Existing Frameworks
	ISO 27001 and ISO 27005
	NIST CSF
	MITRE ATT&CK:
	MITRE CWE
	The MITRE Cyber Prep methodology
	STRIDE
	OWASP
	BSI
	CRF-TT (Cybersecurity Risk Foundation)
	CIS RAM
	ENISA
	ETSI
	FAIR
	Summary

	H1. Oversimplification? A Philosophical View
	
	H2. Oversimplification? An operational View
	Design Principles That Prevent Oversimplification
	What This Framework Deliberately Does Not Encode
	Non-Overlap Rules, Made Operational
	Edge-Case Resolution (Worked Examples)
	Verification Checklist (Comprehensive)
	Limitations and When to Refine
	Summary

	I. Example Control Matrix with KRI, KCI and KPI
	K. Physical Layer Analysis in the TLCTC Framework
	
	L. Integrating Programmable Logic Controller (PLC) Architectures within the TLCTC Framework
	M. Enhancing CVE Details with TLCTC
	N. CVE Analysis Example
	O. Integrating FAIR with the TLCTC Framework
	P. TLCTC Practical Application Guidelines
	Q. Integrating NIST NICE Tasks with the TLCTC Framework
	

	X. Change Log
	Z: References

